

معاونت اكتشاف

مديريت اكتشافات ناحيه اي

عربة

n'i

گروه ژئوفيزيک

مطالعات ژئوالکتریک و مغناطیس سنجی برای تدقیق شاخههای مدفون گسلهای

شهر تبریز (استان آذربایجان شرقی)

توسط: مهدی محمدی ویژه حسین ایرانشاهی سال چاپ ۱٤٠١

(••

er:

معاونت اكتثاف -مديريت اكتثافات ناحيه اي

معاونت اكتشاف

مديريت اكتشافات ناحيه اي

گروه ژئوفيزيک

مطالعات ژئوالکتریک و مغناطیس سنجی برای تدقیق شاخههای مدفون گسلهای شهر تبریز (استان آذربایجان شرقی)

> ک توسط: مهدى محمدي ويژه حسين ايرانشاهي سال تهيه:

12.1

معاونت التثاف -مديريت التثافات ناحيه اي

بنام خدا

این گزارش مورد تائید داوران شورای ارزیابی قرار گرفته و طبق کد شماره

١٤٠٢/٢٤ ك ٢٥٩٧-٤١١-٩٦ از اين شورا مجوز انتشار دريافت كرده است.

ژنوفيزيد

معاونت اكتثاف -مديريت اكتثافات ناحيه اي

فصل اول	
كليات	
ً – ۱ – مقدمه	١
- ۲- موقعیت جغرافیایی محدودههای مورد مطالعه۸	١
- ۳- مختصری از زمین شناسی ساختمانی شهر تبریز	١
- ۴- گسل های فعال در منطقه آذربایجان	١
فصل دوم	
روشهای ژئوفیزیکی	J
- ۱ – ۵ – ۵ – ۵ ویژه الکتریکی	1
'- ۱- ۱- مقاومت ویژه ساختارهای زیرسطحی	۲
'- ۱- ۲- روشهای اندازهگیری داده های مقاومت و یژه	۲
'- ۱- ۳- آرایش های الکترودی مورد استفاده۲۱	۲
'- ۲- روش مغناطیس سنجی	۲
'- ۲- ۱ روش های تحلیل و تفسیر داده های میدان مغناطیسی	۲
فصل سوم	
اندازه گیری داده ها و تجهیزات مورد استفاده	1
۱– ۱– برداشت داده ها	٣
۲- ۲- تجهیزات	٣
۱- ۳- نحوه پردازش، مدل سازی و نمایش داده ها۳۹	٣

معاونت اكتثاف -مديريت اكتثافات ماحيه اي

فصل چهارم

بررسي نتايج

47		۴– ۱– پروفیلهای شماره ۱ و ۲۴
۴۲		۴– ۱– ۱– مطالعات مغناطیس سنجی
۴۵		۴– ۱– ۲– مطالعات مقاومت ویژه
۴۹		۴– ۲– پروفیلهای ۳ و ۴
۴٩		۴– ۲ –۱– مطالعات مغناطیس سنجی
۵۳	4	۴– ۲– ۲– مطالعات مقاومت ویژه
۵۷	\	۴– ۳– پروفیل شماره ۵
۵۷		۴- ۳ -۱- مطالعات مغناطیس سنجی
۶۰		۴– ۳ –۲– مطالعات مقاومت ویژه
۶۲	<u> </u>	۴– ۴– پروفیل شماره ۶
۶۲	····	۴- ۴- ۱- مطالعات مغناطیس سنجی
۶۵	<u> </u>	۲-۴-۲ مطالعات مقاومت ویژه
۶۷		۴– ۵– پروفیلهای شماره ۷ و ۸
۶۷		۴- ۵- ۱- مطالعات مغناطیس سنچی
٧١		۴– ۵– ۲– مطالعات مقاومت ویژه پروفیل های ۷ و ۸
٧۵		۴- ۶- پروفیل شماره ۹
٧۵		۴- ۶- ۱ مطالعات مغناطیس سنجی
٧٩		۴– ۶– ۲– مطالعات مقاومت ویژه
۸۱ ـ		۲۰۴ پروفیل شماره ۱۰
۸۱		
٨۴		۲−۷−۲ مطالعات مقاومت ویژه

وزارت صنعت معدن و نجارت ساز مان زمین شناسی و اکتشافات معدنی کشور Ministry of Industry, Mine and Trade Geological Survey of Iran	معاونت النشاف -مديريت النشافات ماحيه اي
٨٦	۴– ۸– پروفیلهای شماره ۱۱ و ۱۲
٨۶	۴- ۸- ۱- مطالعات مغناطیس سنجی
٨٩	۴– ۸– ۲– مطالعات مقاومت ویژه
۹۳	۴- ۹- پروفیلهای شماره ۱۳ و ۱۴
AT	۴- ۹- ۱- مطالعات مغناطیس سنجی
٩٧	۴- ۹- ۲- مطالعات مقاومت ویژه
1 • 1	۴– ۱۰ – پروفیل شماره ۱۵
1 • 1	۴- ۱۰-۱۰- مطالعات مغناطیس سنجی
1.17	۴– ۱۰– ۲– مطالعات مقاومت ویژه
1.0	۴– ۱۱– مطالعات مقاومت ویژه پروفیل ۱۶
١٠٧	۴– ۱۲ پروفیل شماره ۱۷
۱۰۷	۴- ۱۲ - ۱ - مطالعات مغناطیس سنجی
111	۴– ۱۲ – ۲ مطالعات مقاومت ویژه
۱۱۳	۴– ۱۳ – پروفیلهای شماره ۱۸ و ۱۹
۱۱۳	۴– ۱۳– ۱– مطالعات مغناطیس سنجی
١١٧	۴– ۱۳– ۲– مطالعات مقاومت ويژه
	فصل پنجم
171	نتیجه گیری و پیشنهادات
174	سپاسگزاری
۱۲۴	پيوست الف

Ministry of Industry, Mine and Trade Geological Survey of Iran

معاونت اكتثاف -مديريت اكتثافات ناحه اي

letit فصل اول كليات 1- 1- مقدمه به درخواست مدیریت محترم مرکز شمال غرب سازمان زمین شناسی و اکتشافات معدنی کشور، مطالعات ژئوفیزیک جهت تدقیق شاخه های گسل های مدفون در محدوده شهرستان تبریز صورت پذیرفت. بدین منظور اکیپ ژئوفیزیک سازمان در دو ماموریت ۲۰ و ۱۵ روزه و طی احکام جداگانهای به شماره های ۳۱۶ و ۸۱۲ به ترتیب در تاریخ های ۹۹/۰۴/۱۱ و ۹۹/۰۷/۰۲ در منطقه حضور یافت. سرپرست گروه در ماموریت های فوق به تر تیب دکتر مهدی محمدی ویژه و مهندس حسین ایرانشاهی بوده و مهندس عباس باقری (کارشناس همراه) و آقای مرتضی صادقیانی (تکنسین) با گروه همکاری داشتهاند. در این مطالعه از روش های مغناطیس سنجی و مقاومتویژه الکتریکی برای بررسی های زیرسطحی استفاده شده است. در نهایت تعداد ۲۴۴۰ داده با روش مغناطیس سنجی و ۱۷۸۸۴ داده با روش مقاومت ویژه الکتریکی در ۱۹ پروفیل برداشت شد.

معاونت اكتثاف -مديريت اكتثافات ناحيه اي

۱- ۲- موقعیت جغرافیایی محدودههای مورد مطالعه

تبریز یکی از شهرستانهای استان آذربایجان شرقی است که در مرکز این استان واقع شدهاست و نیز مرکز اداری و سیاسی استان است. تبریز از شمال به شهرستان ورزقان، از جنوب به شهرستان مراغه، از شرق به شهرستان هریس و بستان آباد، از غرب به شهرستان اسکو و شمال غرب به شهرستان شبستر محدود می گردد. ارتفاع تقریبی این شهر از سطح دریا ۱۳۰۰ تا ۲۱۰۰ متر متغیر میباشد. محدوده های مورد مطالعه در شهر تبریز و حومه شهر واقع شده است که از آن جمله می توان به شهر تبریز، جاده مرند- تبریز (حدود ۱۵ کیلومتری شهرستان صوفیان)، روستای گل کچر و رضوانشهر اشاره نمود. شکل ۱–۱ راه های دسترسی در اطراف شهر تبریز و شکل های ۱–۲ و ۱–۳ به ترتیب موقعیت پروفیل های ژئوالکتریک و مغناطیس سنجی بر روی تصویر هوایی محدوده مورد مطالعه را نشان می دهد.

شکل۱-۱: موقعیت محدودهی مورد مطالعه (مستطیل قرمز رنگ) در نقشه راه ها

ژ نوفیز ک

معاونت اكتشاف -مديريت اكتشافات ماحيه اي

شکل ۱- ۲: موقعیت کلی پروفیل های برداشت ژئوالکتریک (خطوط قرمز رنگ) بر روی تصویر ماهواره ای (بر گرفته از نرم افزار Google earth) از محدوده های مورد مطالعه

ژ نوفیزیک

معاونت التثاف -مديريت النثنافات ماحيه اي

شکل ۱– ۳: موقعیت کلی محدوده های برداشت مغناطیس سنجی (کادر ها و پروفیل های قرمز رنگ) بر روی تصویر ماهواره ای (بر گرفته از نرم افزار Google earth) از محدوده های مورد مطالعه

معاونت اكتثاف -مديريت اكتثافات ناحيه اي

۱- ۳- مختصری از زمین شناسی ساختمانی شهر تبریز

هیچ زمین لرزه دستگاهی بزرگ طی دویست و سی سال گذشته در تبریز به ثبت نرسیده است. با این حال، نگاهی به زمین لرزه های تاریخی تبریز و آبادی های مجاور آن نشان می دهد که این گستره بارها رخدادهای ویران گری را متحمل شده است (رجوع به ذکا (۱۳۶۸)، امبرسیز و ملویل (۱۹۸۲)، بربریان (۱۹۹۷)، بربریان و همکار (۱۹۹۹)). کهن ترین این زمین لرزه ها در سال ۸۵۸ میلادی با بزرگی ۶ ریشتر رخ داده است. افزون بر آن زمین لرزه سال ۱۰۴۲ میلادی با بزرگی ۲/۷ زمین لرزه ۳ ۱۲۷۳ تبریز با بزرگای ۸/۶ زمین لرزه سال ۴ ۱۳۰ میلادی با بزرگی ۷/۶ زمین لرزه سال ۱۹۴۱ میلادی منطقه آذرشهر با بزرگی ۸/۵، زمین لرزه سال ۱۹۰۷ میلادی با بزرگی ۹/۵، زمین لرزه سال ۱۹۷۱ میلادی ناحیه شبلی با بزرگی ۳/۷، زمین لرزه سال ۱۷۱۷ میلادی تبریز با بزرگی ۹/۵، زمین لرزه سال میلادی مرند با بزرگی ۳/۶ بر روی این سامانه گسلی رخ داده اند. میلادی مرند با بزرگی ۶/۴ بر روی این سامانه گسلی رخ داده اند.

در بیشتر نقاط شمال تبریز در زیر محله های شمالی این شهر مدفون شوند. با این حال بر روی عکس های هوایی گرفته شده در سال ۱۳۴۵ (به مقیاس ۲:۲۰۰۰)، سیماهای نوزمین ساختی و ریخت زمین ساختی بسیاری به گونه اسناد و مدارک با ارزش ثبت و ضبط شده است.

مخروط افکنههای برده شده، مخروط افکنههای برپا شده، گسیختگی راستگرد کانالهای آبراههها، پشتههای مسدود کننده، آبراهههای بی سر و خشک شده و ... شواهدی از دگریختیهای جوان در دامنهها و کوهپایههای عینالی هستند که نسل حاضر با ساختن سکونت گاهها، تاسیسات و خطوط حیاتی شهر بر روی آنها سعی در فراموشی و کتمان تاریخ پرتکاپوی این سرزمین دارد. ساخت و سازهای بیرویه و توسعه شهر تبریز به سوی شمال و شمال خاوری (بر روی گسل)، اجرای طرحهای عمرانی بزرگ مانند سد ونیار و شهرک سازی در حریم گسل و عبور

معاونت اكتثاف -مديريت اكتثافات ناحيه اي

خطوط حیاتی شهر ازجمله لوله کشی اصلی گاز و برجهای انتقال نیرو، از موارد مخاطره آمیز شهر تبریز در ارتباط با لرزه خیزی آن می باشد (برگرفته از گزارش اولیه مطالعات تدقیق گسل شمال تبریز، چایچی زاده، ۱۳۹۹). عمده محدوده های مورد بررسی در این مطالعه بر روی نهشته های آبرفتی عصر حاضر و یا سنگ های هوازده رسوبی قرار گرفته اند. از جمله واحد های سنگی که در محدوده و یا در مجاورت آن مشاهده می شوند می توان به ماسه سنگ ها و مارن های قرمز، مارن های ماسه ای گچ دار، کنگلومرای قرمز، آهک های توده ای، لایه ای و تبلور یافته و در برخی نقاط حضور محدود تراکی آندزیت اشاره کرد. در شکل ۱–۴ موقعیت پروفیل های مقاومت ویژه بر روی نقشه زمین شناسی ۱:۱۰۰، ۲:۱۰۰ تبریز آورده شده است.

شکل ۱- ۴: جانمایی پروفیل های ژئوالکتریک بر روی نقشه زمین شناسی (بر گرفته از نقشه زمین شناسی ۱:۱۰۰۰۰ تبریز)

معاونت اكتثاف -مديريت اكتثافات ناحيه اي

	Ministry of Industry, Geological Su	Mine and Trade Irvey of Iran			به ای	-مديريت الشافات ماج	عاونت اكتثاف
Г		LEO	GEND			, اهنما	
	in <u>r</u>	off Salt flat, O al ;	Recent alluvium. O sd · Sand dune.				O sf I sc I w
			4			الرسوى ميدمر والساد و	ن عمادي
	- 2	Q : Terraces and gravel ran.				تی و مخروط افکنه ها	یادگانه های ابرف
	اتر نر کې	Q ¹² : Younger terraces and gravel plain (I	Dasht).			دی جوان و پشنهای آبرفتی	پادگانه های آبرف
	° °	Q ^{t1} : Older terraces.					پادگانه های قدیمی
	PIQ ^V	PIQ V : Trachyandesite volcanic dome and	volcanic breccia			ى تراكى آندزيتى	گنبدهای آتشغشان
	N PIO ^C	PIQ ^C :Conglomerate,moderately consolida	ited with intercalation of sandstone pu	mice and pyroclastic.	لپای آذر آوری	خت بیهمراه میان لایه هایی از مامه سنگ ، پومیس و سنگ	کنگلومرای بیمه م
	-t P	Pl *: Alternation of green mari, and limes Pl *: Alternation of tuff and brecciated law	a Pl. brecciated lava trachy andesite	6	,	سبز رنگ و اهلایی محتوی چرت دازه های برشی ¹ pf گیدازه های برشی تراکی آندزیتی ^b p	تناویی از مارتیان. تناویر از توف و گ
	о .}						
0	Pi	Pl ^{dt} : Fine clastic sediments,tuff with diate	omite and fishbed.			ِ آواري و توف با لايه هاي ديا تومه و ماهي	نپشته های دانه ریز
$\mathbf{X} \in \mathbf{P}$	M ₅	M ₅ ^{sc} : Red conglomerate with alternation	of sandstone and red marl.			تناربی از ماسه سنگ و مار ^ن قرمز م sm	كنگلومراي قرمز با
	Ling Ma	M ^{mg} Alexandstone with mari. M ^{mg}	Red marl with sandstone.		M	قرمز رنگ 🖬 مارن بیهمراه مات سنگ قرمز رنگ 🖥	ماسه سنگ و مارن
	<u>.</u> З м	M ₂ - Alternation of greengrey and red m M ₂ ¹ : Light grey massive to bedded limest	one.	fsaltiferous sandy	ای ، کچدار و نمکدار	، سبز خاکستری و قرمز بادرون لایه های از مارنهای ماسه ۱۰ یو نگ خاکستری روشن	تناویی از مارنیهای آهک توده ای و لایه
	о м <mark>с м</mark>	M ^c ₁ : Conglomerate with interlayered ma	rl. M_1^v : Trachyandesite.			یه هایی از مارن M ₁ تراکی آندزیت M ₁	کنگلومرا با درون لا
		K ¹ . : Recrystallized marly limestone					م کردها متله
	v Si k	K ^c : Conglomerate with sandstor	ne and shale. K ^{ms} : Marl, shale, light	green sandstone	روشن K ^{ms}	اقته مارمی سه سنگ و شیبا _ر K ⁰ مارن ، ماسه سنگ ، شیبل برنگ سبز	کنگلومرا بیمر اه ما
	- juli	K ^s : Sandstone with intercalation	u of thin beds of shale.			الايه هاي ناز ک سيل	مات سنگ با درون
	• ۲ <mark>۲</mark>	K_u^v Basic and ultrabasic rocks. I	K ^{f1} _u : Alternation of shale mart and	sandstone.(Flysch Type).	گونه)	ر اولترا بازیکه "Ku تناویی از شیل و ماسه سنگ (فلیش	سنگهای بازیک و
	x $\lambda_1 \cdot y$ k_1^1	K ¹ ₁ : Orbitolina grey limestone (Albian-	Aptian).			رييتولين دار (آلبين – آپتين)	آهک خاکستری او
	ο <u>j.</u> γ κ	K_1^c : Basal conglomerate and sandstone.				یگ فاعدہ	کنگلومر او ماے ب
	الله الم	J _s : Greengrey shale and sandstone with d	ark grey limestone (SHEMSHAK-FM).	(ىېز تېرەبا آھڭ خاكسترى تېرەرنىڭ (سازند شمشڭ	شيل و ماسه سنگ م
	× 1) ×	J*: Basic volcanic rock		in stars (ELEKA DA)		بازیک	سنگهای ولکانیکو
	5 ^{ne}	R e Dark and lines and a same dela	(DIUTELLUM)	ate at top (ELEKA-FM)	(حازند اليكا)	. گرم در پائین و دولومیتهای خا کستری روشن صحیم در بالا	آهڪ مارني با اتار
		P . : White to violet quartz sandstone (DC	DROUD-FM).			بره و دولومیتهای ضخیم (سازند روته) . میدند امینفشینگار (سانند میده)	ا هدک خاکستری تی
		CO : Sparry limestone dolomite nodula	r mark limestone and dark erry micae	ousshale (MILA-FM)		ی معید و بیعس رفت (سارند درود)	مات شکا کواریز
	o ⊒ ij	ε_{mq} : White quartz sandstone (TOP-QU	ARTZITE).	oussiale (MILPOTM)	ټېره ميځادار (سازند ميلا)	,شت ، دولومیت ، اهلا مارنی نودولا ر و شیلهای خا تستری کوار نزی (کوار نزیت راسی)	ا هک متبلور دانه در ما سه سنگ سفید آ
	1 ، -اردوا <mark>د^ما</mark>	\mathcal{E}_{z1} : Red sandstone and micaccous shale.	Vin			ى ميكادار قرمز رنىڭ (سازند زاگون ولالون)	ماسه سنگ و شیلها
	۹ ۵ ور وه	$\mathbf{C}_{\mathbf{b}}$: Alternation of cherty recrystallized d	olomite and micaceous shale (BARUI	·FM).		، چرتى با شيل ميكادار (سازند باروت)	تناوب دولومينهاى
	WA NO PE	C _S : Massive and bedded recrystallized do P.C. Bed to violet micacous shale	and sandstone with interralation	H-FM). of darkgrey cherty do	omite () l v d) l -	چرت دار ضخیم با لایه های گچ (سازند سلطانیه) گ	دولومیتیهای متبلور
	PREC BRI Junici	PE_k^v : Acidic volcanic rocks and minor a	amount of gabbro-diabase (KAHAR-F	M).	چرت دار (سارند بایندور)	به سند قرمز با طبعانی از دولومیت های جا تستری نیزه. بی اسیدی و بمقدار اندک گابرو- دیاباز (سازند کیمر)	شیل میکادار ،مار سنگهای آتشغشانم
	.5	PC_k : Chlorite-sericite schist and quartzi	ite. (KAHA R -FM)	0		يست و گواتزيت . (سازند کېر)	کلریت ، سر سیت ش
	erd	grd : Granite-granodiorite (Pliocene).				ت - گرانوديوريت (پليوسن)	گرانیہ
		du: Disharia duka (lata Centaciour)		6		(میلا کرنامی) د المان	5.
		op: Diabasic dyke (late-c retacious).	Intrusive rocks			ى دەپەرى (بىدار ترەتما)	ایلیس کې نفو
		gr : Granite, alkali granite. - (pre-Permiar	3)		N .1	ت ، آلکالی گرانیت کہ قبل ازیر مین	الم كرانيه
		gb : Gabbro-					گايرو
		CENEDAI	SYMBOLS				
		U E N E K A I	L 3 I M B U L S		های عمومی	10 cm	
		Thrust fault	گسل رورانده		First class road	جادہ در جہ یک	
		Major fault,	گسل اصلی	-	Second class road	جاده درجه دو	
		Minor fault Basement fault	گسل فرعی		Third class road	جاده درجه سه	4 - E
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Uuconformity	گسلپوشيده گ ش		Animal track Railwayline	جادہ مالرو	75
		Anticline axes	د در سیبی محور تاقدیس	2	River, drainage	راه آهن آبر اهه و رودخانه	
	X	Syncline	محور ناوديس	.1305	Barometric elevation in meters.	القاط ارتفاعي	
		SURCHIE	امتذاد لايه	•	spring	· ····	
	* 30"	Fossil locality Measured dio	محل مشاهده فسيل	<ul> <li>•</li> <li>•</li> </ul>	Town, village	شهر و روستا هر	
	· ·	0 - 29 ]	شپب اندازه دیری شده	بالالتيانينية. 1	Airport	پرتگاه د دگاه	
		301-591 -	شیب بر مبنای عکسهای هوایی	*	Mine in operation	فرود ن. معدن در حال کار	
		601-901		$\times$	Abondoned mine	معدن متروكه	V
	80°	Overturned dip.	شيب برگشته	<u>Cu.F</u> e	Ore indication	آثار فلزى	
	₽	Geological section	برش زمین شناسی م	Ba	Baritin	باريتين	
	X	Volcanic dome	گنبد اتش نشانی	U	Gypsum	. کچ	

شکل ۱– ۵: راهنمای نقشه زمین شناسی ۱:۱۰۰۰۰ تبریز





معاونت اكتثاف -مديريت اكتثافات ماحيه اي

۱- ٤- گسلهای فعال در منطقه آذربایجان

گسل تبریز یکی از ساختارهای خطی ایران است که با طول تقریبی ۱۰۰ کیلومتر از کوههای میشو (در غرب) تا بستان آباد (در شرق) قابل ردیابی است. بهترین اثر این گسل در شمال تبریز دیده می شود و به همین دلیل گسل شمال تبریز نام گذاری شدهاست. روند عمومی آن شمال ۱۱۵ درجه شرقی و شیب آن قائم است. از صوفیان به سمت غرب، این گسل پس از گذشتن از شهرستان خوی به سمت ماکو و سپس به کوههای آرارات در ترکیه می رسد. ادامه جنوب شرقي آن كوههاي سلطانيه در جنوب شرقي زنجان است كه ممكن است به گسل قم-زفره برسد. گسل شمال تبریز یکی از گسل.های قدیمی ایران است که از فروافتادگی زنجان⊣بهر، شمال تبریز و شمال غربی آذربایجان گذشته و تا قفقاز ادامه می یابد. در زمان دوونین پیشین، این گسل منطقه آذربایجان را به دو بلوک تقسیم میکند. بلوک شمالشرقی فروافتاده و بلوک جنوب غربی تا پایان کربنیفر به صورت فرازمین بودهاست. بنابراین ممکن است فعالیت این گسل از دوره دوونین آغاز شده باشد، هرچند که سن قدیمی تر آن محتمل است (بر گرفته از Faridi et al., 2017). در شکل ۱-۶ موقعیت گسل شمال تبریز همراه با گسل های اصلی منطقه آذربایجان بر روی نقشه توپو گرافی رادار شاتل (SRTM) آورده شده است. S Ş

¹. M. Faridi, J.-P. Burg, H. Nazari, M. Talebian, and M. Ghorashi, 2017, Active Faults Pattern and Interplay in the Azerbaijan Region (NW Iran), *Geotectonics*, 2017, Vol. 51, No. 4, pp. 428–437.



معاونت اكتثاف -مديريت اكتثافات ناحيه اي



شکل ۱- ۴: تحسل شمال تبریز همراه با گسل های اصلی محدوده آذربایجان پر روی نقشه تو یو گرافی رادار شاتل ( . 2017)

ژنوفیزیک



معاونت اكتشاف -مديريت اكتشافات ماحه اي

er: in it فصل دوم روشهای ژئوفیزیکی -دراین فصل تئوری روشهای ژئوفیزیکی مورد استفاده در این مطالعه به اختصار آورده م ۲- ۱- مقاومت ويژه الكتريكي در کاوشهای الکتریکی اثرهای سطحی حاصل از عبور جریان در داخل زمین آشکارسازی می شوند. در مقایسه با دیگر روش های ژئوفیزیک نظیر ثقل سنجی، مغناطیس و رادیواکتیویته که در آنها تنها یک میدان نیرو یا ویژگی بیهنجار مورد استفاده قرار میگیرد، روشهای الکتریکی از تنوع بیشتری نسبت به دیگر روشهای ژئوفيزيكي برخوردارند. هدف اصلي عمده روش هاي الكتريكي، اندازه گيري مقاومت ويژه الكتريكي زمين است. در این روشها، برای اینکه یک ویژگی زیرسطحی مشخص شود، باید مقاومت ویژه الکتریکی آن به طور بارزی متفاوت از محيط اطرافش باشد. بنابراين، استفاده از روش هاي الكتريكي، به حالت هايي كه يك تباين مقاومت ويژه وجود داشته باشد، محدود می شود. در این روش ها، ویژگی های زمین شناسی، آب های زیرزمینی و سایر خصوصیات موجود، به طور مستقيم اندازه گيري نمي شود. بلكه براي تفسير مناسب داده هاي الكتريكي، نياز به يك سري اطلاعات خارجى مىباشد.



معاونت الثناف -مديريت الثنافات ماحيه اي

روش مقاومت ویژه الکتریکی که از جمله روش های شناخته شده ژئوالکتریک است، به طور مؤثری برای اکتشاف منابع آب زیرزمینی، بررسی انواع آلودگیهای آبهای زیرزمینی، آشکارسازی محل حفرههای زیرسطحی، گسلها و مناطق خردشده، در مسائل مهندسی و همچنین بقایای ساختارهای مدفون در بررسیهای باستانشناسی و کاربردهای متنوع دیگر، مورد استفاده قرار می گیرند. هدف از برداشت های مقاومت ویژه، تعیین توزیع زیرزمینی مقاومت ویژه با استفاده از اندازه گیریهای سطحی میباشد. از این اندازه گیریها، مقاومت ویژه واقعی تودههای زیرسطحی قابل تخمین است.

در اندازه گیریهای مقاومت ویژه با تزریق جریان به درون زمین ازطریق دو الکترود جریان و اندازه گیری اختلاف ولتاژ حاصل میان دو الکترود پتانسیل، مقاومت ویژه ساختارهای زیرسطحی قابل تخمین است. در شکل ۲-۱ که یک آرایش چهار الکترودی را نشان میدهد. الکترودهای *A و B* الکترودهای جریان و الکترودهای *M و N* الکترودهای پتانسیل میباشند. معادله (۲–۱) معادله اساسی برای محاسبه مقاومت ویژه ظاهری برای هرنوع آرایش

الکترودي است.

$$\rho_a = \frac{2\pi}{\left\{ \left( \frac{1}{AM} - \frac{1}{BM} \right) - \left( \frac{1}{AN} - \frac{1}{BN} \right) \right\}} \frac{\Delta V}{I}$$

(1-7)

در این رابطه، *I* شدت جویان ارسالی (برحسب آمپر)،  $\Delta V$  اختلاف پتانسیل قرائت شده (برحسب ولت) و معدار مقاومت ویژه ظاهری⁽(برحسب اهممتر) میباشد. در صورتی که اگر زمین غیرهمگن باشد (که معمولاً چنین است) و فواصل الکترودی تغییر کنند و یا فواصل ثابت بوده در حالی که مجموعه آرایش تغییر مکان یابد، مقاومت ویژه کلاً تغییر خواهد یافت. نتیجه این است که در هر اندازه گیری مقدار متفاوتی از مقاومت ویژه ظاهری

' Apparent resistivity



معاونت اكتثاف -مديريت اكتثافات ماحيه اي

حاصل میشود. واضح است که بزرگی این مقدار با آرایش الکترودها ارتباط نزدیک دارد. اگر چه این مقاومت ویژه ظاهری تا حدودی مشخص کننده مقاومت ویژه واقعی منطقهای در نزدیکی مجموعه الکترودها است، ولی قطعاً یک مقدار مطلق نخواهد بود.

شکل ۲-۱- آرایش چهار الکترودی رابطه بین مقاومت ویژه حقیقی و ظاهری رابطهای پیچیده است. برای تعیین مقاومت ویژه حقیقی ساختارهای زیرسطحی از روی مقادیر ظاهری آن، از روشهای معکوس سازی توسط نرم افزارهای کامپیوتری استفاده می شود.

N

м

۲- ۱- ۱- مقاومت ویژه ساختارهای زیرسطحی

в

برداشتهای مقاومت ویژه، تصاویری از تغییرات مقاومت ویژه ساختارهای زیرسطحی در اختیار قرار میدهند. برای تبدیل این تصاویر به تصاویر زمینشناسی، اطلاعاتی در خصوص مقادیر مقاومت ویژه انواع ساختارهای زیرسطحی و همچنین زمینشناسی محیط تحت بررسی حائز اهمیت است. مقاومت ویژه برخی از مواد، سنگها، کانیها و محیطهای معمول زمینشناسی در جدول ۲–۱ آورده شده است. دامنه تغییرات مقاومت ویژه در مقایسه با کمیتهای فیزیکی که در دیگر روشهای ژئوفیزیک محاسبه میشوند بسیار بیشتر است. مقاومت ویژه الکتریکی مواد مختلف از ۲۵^{۸–۱۰} × ۱۰۶ برای نقره خالص تا ۲۵^{۵۱} ۱۰ برای گوگرد خالص متغیر است. سنگ-های دگرگون و آذرین نوعاً دارای مقادیر با مقاومت ویژه بالا هستند. مقاومت ویژه این سنگها اساساً وابسته به درجه شکستگی و درصد پرشدگی آنها از آبهای زیرسطحی است.



معاونت اكتثاف -مديريت اكتثافات ماحيه اي

سنگهای رسوبی به علت تخلخل و به واسطه آن محتوی آب بیشتر، معمولاً دارای مقاومت ویژه پایین میباشند. خاکهای مرطوب و آبهای زیرزمینی شیرین، دارای مقاومت ویژه پایینی هستند. خاکهای رسی از انواع ماسهای آن دارای مقاومت ویژه پایین تری میباشند. مقدار مقاومت ویژه آب دریا که برابر مقدار پایین ۲/۲ اهم-متر است، ناشى از ميزان بالاي نمكهاي محلول آن است. همانطور که در جدول ۲-۱ دیده میشود، مقاومت ویژه انواع سنگها و خاکها دارای همپوشانی است. این از آنجا ناشی می شود که مقاومت ویژه نمونه های خاصی از خاک و سنگ وابسته به چندین عامل مختلف عوامل مؤثر در مقاومت ويژه الكتريكي آنها عبارت است از: - حجم خلل و فرج موجود در سنگ و میزان شکستگه ،ها - وضع قرار گرفتن خلل و فرج سنگ و چگونگی ارتباط آنها با یکدیگر – حجمی از خلل و فرج سنگ که حاوی آب باشد - قابلیت هدایت الکتریکی آب موجود در سنگ 0 - جنس کانی های تشکیل دهنده سنگ بنابراین مقدار مقاومت ویژه الکتریکی یک لایه بستگی به وضعیت زمین شناسی منطقه مورد مطالعه دارد. به عبارت دیگر تفکیک لایهها بر حسب جنس آنها از نظر زمین شناسی تنها با بدست آوردن مقاومت ویژه الکتریکی آنها میسر نمیباشد و مقاومت ویژه الکتریکی رسوبات، سازندها و واحدهای زمین شناسی موجود در هر منطقه باید به طور جداگانه تعيين شود.





معاونت اكتثاف -مديريت اكتثافات ماجه اي

	مقاومت ویژه (اهم متر)	مواد معمول زمين شناسي
	۵۰۰->۱۰۰۰	آهکهای آسماری
	۲۰۰ – ۵۰۰	آهکٔهای کرتاسه
	۳۰۰ – ۱۰۰۰۰	ماسه سنگ کوارتزیت
	۲۰ – ۱۰۰	خاكستر (برش) آتشفشاني
	11	آب زیرزمینی
(a. •	•/٢	آب دريا
	۵۰ – ۵۰۰۰	سنگ آهک
	۲۰ – ۲۰۰۰	شيل
	F-1	رس
	۳۰۰ – ۲۰۰۰	آبرفتهای دانه درشت و کنگلومرا
	1	آبرفتهای دانه متوسط
	01	آبرفتهای دانهریز
	11	شن و ماسه خشک
	۵۰ – ۵۰۰	شن و ماسه اشباع از آب شیرین
	$\cdot / \Delta - \Delta$	شن و ماسه اشباع از آب شور

جدول۲- ۱: مقاومت ویژه برخی از انواع آب، سنگ و رسوبات

۲- ۱- ۲- روش های اندازه گیری داده های مقاومت ویژه

دادههای مقاومت ویژه به صورت یک بعدی، دو بعدی و همچنین سه بعدی اکتساب می شوند. یک عملیات یا برداشت ژئوالکتریک به یکی از دو روش سونداژزنی قائم الکتریکی (VES) و یا پروفیل زنی آنجام می شود. در روش سونداژزنی، تغییرات عمقی یا قائم مقاومت ویژه مورد بررسی قرار می گیرد. اما در روش پروفیل زنی، تغییرات جانبی مقاومت ویژه مواد زیرسطحی در طول یک خط پروفیل بررسی می شود. در روش پروفیل زنی، آرایش مورد

Vertical electric sounding

Profiling



معاونت اكتثاف -مديريت اكتثافات ماحيه اي

استفاده و پارامترهای آن، ثابت باقی میمانند و الکترودها در طول خط پروفیل جابه جا میشوند. در مواقعی که تغییرات مقاومت ویژه در طول پروفیل مورد بررسی هم به صورت جانبی و هم به صورت عمقی وجود دارد، دادهها به صورت دو یا سه بعدی (تلفیقی از سونداژزنی و پروفیل زنی) برداشت میشوند.

۲- ۱- ۳- آرایشهای الکترودی مورد استفاده

برای اندازه گیری های داده های مقاومت ویژه آرایش های الکترودی مختلفی پیشنهاد شده است. از مهم ترین آرایش هایی که در روش مقاومت ویژه بکار برده می شوند، می توان به آرایش های ونر، شلومبر گر، دوقطبی – دوقطبی، قطبی –دوقطبی أو گرادیان ^مشاره کرد. پر کاربردترین این آرایش ها، آرایش ونر، شلومبر گر و دوقطبی – دوقطبی می باشند. آرایش ونر در پروفیل زنی، آرایش شلومبر گر در سونداژزنی و آرایش دوقطبی –دوقطبی در تهیه شبه مقاطع و برداشت های *IP* محبوبیت زیادی پیدا کرده اند.

همانطور که ذکر شد، در این مطالعه از آرایش دوقطبی – دوقطبی استفاده شده است. در این نوع آرایش هر چهار الکترود A,B,M,N در امتداد یک پروفیل قرارداشته وعملاً فاصله الکترودهای فرستنده مساوی فاصله الکترودهای گیرنده و برابر مقدار ثابت a می باشد (AB=MN=a). در هر اندازه گیری الکترودهای AB ثابت بوده و الکترودهای MN درامتداد پروفیل حرکت می کنند. فاصله بین نزدیکترین الکترودهای جریان و پتانسیل برابر na می با شد (..., 1,2,3,...) و عمق هراندازه گیری برابر (n+1)a/2) خواهد بود. عدد اندازه گیری شده به نقطه ای در

Wenner Schlumberger Dipole-dipole Pole-dipole Gradient





معاونت اكتثاف -مديريت اكتثافات ناحيه اي

محل تلاقی دو خط با زاویه ۴۵ درجه نسبت به سطح زمین که از وسط AB,MN رسم شده، نسبت داده می شود. به این ترتیب از مجموع نقاط اندازه گیری شـده با این روش شـبه مقطعی از مقاومت ویژه ظاهری در امتداد یک پروفیل بدست خواهد آمد (شکل ۲-۲). لازم به توضیح است که عمق به دست آمده از این روش عمق واقعی



شکل ۲-۲- آرایش دوقطبی- دوقطبی

۲- ۲- روش مغناطیس سنجی

مطالعهٔ مغناطیس زمین، قدیمیترین شاخهٔ ژئوفیزیک است که سالهاست در اکتشاف نفت، کانی های اقتصادی و حتی مقاصد باستان شناسی کاربرد دارد. برای نخستین بار گیلبرت نشان داد که میدان مغناطیسی زمین راستایی عموماً شمالی – جنوبی در نزدیکی محور چرخشی زمین دارد. از آن زمان تاکنون پیشرفت های قابل توجهی در زمینه ساخت دستگاهها و تفسیر اندازه گیری های این روش بدست آمده است. اکتشاف به روش مغناطیسی بر اساس اندازه گیری تغییرات میدان مغناطیسی در منطقه مورد مطالعه انجام می شود. در واقع اکتشاف به روش مغناطیسی را



معاونت اكتثاف -مديريت اكتثافات ماحيه اي

قائم اندازه گیری می شود. با توجه به اینکه میدان مغناطیسی دارای دو قطب و نیز راستا می باشد، لذا تفسیر نقشه های مربوطه پیچیده تر از سایر روش ها می باشد. از طرف دیگر، در مقایسه با اغلب روش های ژئوفیز یکی، اندازه گیری های صحرايي در اين روش، ارزان و ساده است و عملاً نيازي به اعمال تصحيحات پيچيده و طولاني در قرائتها نيست. میدان مغناطیسی زمین تا آنجا که به اکتشاف ژئوفیزیکی مربوط است، از سه قسمت تشکیل شده است: ۹۰ میدان اصلی، که هر چند با زمان ثابت نیست، نسبتاً به آرامی تغییر می کند و منشاء آن داخلی است و حدود ۹۰ درصد میدان مغناطیسی زمین را تشکیل میدهد. ۲- میدان خارجی، جزء کوچکی از میدان اصلی است که منشاء آن خارج از زمین میباشد و نسبتاً سریع تغییر می کند، تغییری که بخشی از آن دورهای و بخشی اتفاقی (تصادفی) است (مربوط به تغییرات روزانه و سالیانه خورشيد و روزانه ماه مي باشد). تغییرات میدان اصلی، معمولاً ولی نه همیشه خیلی کو چکتر از میدان اصلی است، نسبتاً با زمان و مکان ثابت است و در اثر بیهنجاریهای مغناطیسی محلی در نزدیکی سطح پوسته زمین بوجود می آید. این تغییرات هدفهای ژئوفیزیک اکتشافی را تشکیل میدهد. اگر جسمی در میدان زمین Fقرار بگیرد در این صورت یک میدان به نام J (مغناطیدگی القایی) به داخل جسم القاء مي شود. كه خواهيم داشت: J = KFکه K ضریب مغناطیس پذیری (خود پذیری مغناطیسی) می باشد. اجسام بر حسب ضریب K به سه دسته تقسیم لىوند:

¹. Induced Magnetization

² . Susceptibility



معاونت اكتثاف -مديريت اكتثافات ماحيه اي

- K < 0 ، دیامغناطیس. معمولیترین مواد دیامغناطیس زمین، گرافیت، ژیپس، مرمر، کوارتز و نمک ، میباشند.
  - K > 0 ، پارامغناطیس. عناصری مانند نیکل و کلسیم و ... این اثر با دما کاهش می یابد.
  - K>>0 ، فرومغناطیس اکثراً اکسیدهای آهن.

خودپذیری مغناطیسی، متغیری مهم در مغناطیس است و همان نقشی را داراست که چگالی در تفسیرهای گرانی دارد. هر چند تغییرات بزرگی در مقادیر *K*، حتی برای یک سنگ بخصوص وجود دارد و لیوشی وسیعی بین انواع مختلف مشاهده میشود، سنگهای رسوبی پایین ترین و سنگهای آذرین اصلی بالاترین میانگین خودپذیری را دارا میباشند. در هر مورد خودپذیری تنها به مقدار کانی های فری مغناطیس موجود بستگی دارد که عمدتاً مانیتیت و بعضی اوقات ایلمنیت یا پیروتیت میباشند (سنگهایی نظیر گابرو، پیروکسنیت، بازالت و آندزیت دارای خاصیت مغناطیسی بالا هستند).

اغلب ممکن است که کانیهایی با خودپذیری منفی توسط اندازه گیریهای مغناطیسی تفصیلی تعیین محل شوند، هر چند این مقادیر منفی کوچکند. همچنین باید خاطر نشان کرد که بسیاری از کانیهای آهن فقط کمی مغناطیسیاند. سنگها وکانیها از نظر مغناطیس به سه دسته؛ دیا مغناطیس (بدون مغناطیس)، پارامغناطیس (دارای مغناطیس وقتی در معرض میدان قرار می گیرد) و فرومغناطیس ( مغناطیس دار) تقسیم میشوند ( *Telford*, 1990,72).

پارامتر اندازه گیری خاصیت مغناطیس سنگها خودپذیری مغناطیسی است که درجدول ذیل برای تعدادی از کانی ها ارایه گردیده است. این کمیت در سیستم emu، یک کمیت بدون بعد بوده و مقدار آن، π4برابر مقدار آن در سیستم SI می باشد (Blakely, 1995,52).



T

معاونت الثثاف -مديرت الثثافات ماجيه اي

	میانگین خودپذیری ¹ 0 ³ ×	نوع	میانگین خودپذیری ^{10³ ×}	نوع
	٧	كروميت	۶/۵	هماتيت
Ų	۲/۵	ليمونيت	<i>\$</i>	مانيتيت
	-•/•1	كوارتز	•/•۲	زغال
	•/٣	آهڪ	18.	آندزيت

جدول ۲-۱: میانگین خودپذیری بعضی از سنگها و کانیها (Telford, 1990,72)

۲- ۲- ۱ روش های تحلیل و تفسیر داده های میدان مغناطیسی 🛰

جهت تفسیر بهتر دادههای برداشت شده، از روش های مختلف تحلیلی و ترسیمی استفاده می شود. به عنوان مثال روش ادامه فراسو ^۱بمنظور کاهش اثر نویزهای سطحی و نمایش بهتر بی هنجاری های عمیقتر مناسب است در حالیکه نقشه های مشتق جهت آشکارسازی هر چه بیشتر بی هنجاری های سطحی مناسب هستند. نقشه های مشتق اول و دوم، نسبت تغییرات بی هنجاری و شدت تغییرات بی هنجاری را به عمق نمایش می دهد. بدین ترتیب بی هنجاری های سطحی که تغییرات شدیدتری دارند، نمایان تر خواهند شد. ضمن آنکه احتمال عمیق بودن یا ادامه چنین بی هنجاری هایی در عمق منتفی نیست و به همین منظور نقشه های ادامه فراسو تهیه می گردد. به صورت ساده می توان چنین فرض کرد که گیرنده دستگاه مغناطیس سنج در ارتفاعی بالاتر از سطح فعلی اندازه گیری نموده است. آنومالی های مغناطیسی ناشی از توده های مغناطیسی مدفون تمایل دارند که بر روی چشمه قرار بگیرند. در صور تی که جهت میدان مغناطیسی زمین و مغناطیس شوند گی جسم عمودی نباشد، آنومالی مغناطیسی بر روی چشمه

 $^{\rm 1}$  . Upward Continuation

². Sensor



معاونت اكتثاف -مديريت اكتثافات ماحيه اي

قرار نمی گیرد و دارای انحراف خواهد بود. در این حالت آنومالی مغناطیسی ناشی از چشمههای متقارن مانند کره، استوانه و ... متقارن نخواهد بود. با استفاده از انتقال به قطب دادهها می توان آنومالی مغناطیسی ناشی از چشمه مغناطیسی را برای شرایطی که میدان مغناطیسی زمین و مغناطیس شوندگی جسم هر دو قائم باشند، بدست آورد. در نتیجه شکل آنومالیها متقارن تر می شود. این شرایط تنها در قطبهای مغناطیسی برقرار است. نقشهٔ بر گردان به قطب نیز به منظور تعیین بهتر محل بی هنجاری با توجه به موقعیت جغرافیایی و با در دست داشتن مقادیر declination نیز به منظور تعیین بهتر محل بی هنجاری با توجه به موقعیت جغرافیایی و با در دست داشتن مقادیر inclination

به منظور تفسیر بهتر لازم است که نوفههای احتمالی در برداشت و اثرات بی هنجاری های سطحی، از بین برود بدین منظور از پردازش ادامهٔ فراسو استفاده می شود. در این روش به صورت ساده می توان چنین فرض کرد که دستگاه مغناطیس سنج در ارتفاعی بالاتر از سطح فعلی اندازه گیری نموده است و این کار با استفاده از تبدیل فوریه انجام می شود.

از روش هایی چون سیگنال تحلیلی ^۱جهت تعیین لبه های بی هنجاری و به عبارتی تعیین گسترش جانبی آن استفاده می شود. نبیقیان در مقالهٔ خود سیگنال تحلیلی برای گرادیان های گرانی را به صورت زیر تعریف می کند (Nabighian, 1974, 85-92):

$$A(x,y) = \frac{\partial^2 g}{\partial x \partial z} + \frac{\partial^2 g}{\partial y \partial z} - i \frac{\partial^2 g}{\partial z^2}$$
  
e clais multiplicative multiplication of the second state of the second stat

¹. Analytic Signal



معاونت اكتثاف -مديريت التثافات ماحيه اي

این فرمول کلی است و برای مغناطیس سنجی نیز کاربرد مشابه دارد. چون محل بیشینهٔ سیگنال تحلیلی دقیقاً در بالای لبه یا گوشه قرار دارد، تعیین موقعیت افقی لبهها نیاز به مکان دقیق بیشینهٔ مقدار سیگنال تحلیلی دارد.

جهت تعيين عمق تقريبي مي توان از روش تعيين عمق طيف توان فوريه استفاده كرد. مطالعهٔ طيف توان نشان

میدهد که در منحنی لگاریتمی طیف توان، قسمتی از منحنی که در فرکانس های پایین سریعاً کاهش مییابد مربوط به چشمه های عمیق میباشد و شیب ملایم تر مربوط به چشمه های نزدیک سطح (سطحی) است و وقتی منحنی به فرکانس نایکویست نزدیک می شود، در یک سطح انرژی تقریباً ثابت نوسان میکند که نشاندهنده نوفه است و شیب خطوط برازش داده شده بر این منحنی نسبتی از عمق بی هنجاری را نشان میدهد. در نرم افزار Geosoft به صورت خودکار این عملیات ها را انجام داده و عمق متوسط بی هنجاری های موجود در منطقه را نشان میدهد.

روش اویلر دیکانولوشن، روشی سریع برای تفسیر دادهای میدان پتانسیل است. در صور تیکه مقدار صحیحی از شاخص ساختاری مربوط به هندسه توده سب شونده، انتخاب و در معادله اویلر استفاده شود، این روش به راحتی می تواند تخمین صحیحی از عمق آنومالی مورد نظر ارایه کند. اساس این روش بر مبنای معادلات دیفرانسیل جزیی اویلر بنا شده که با معرفی کمیتی به نام شاخص ساختاری می توان موقعیت توده ها را به کمک اندازه گیری میدان پتانسیل در روی یک پروفیل یا نقشه و با تقسیم آنها به پنجره های اندازه گیری متوالی بدست آورد. هر پنجره تخمینی از عمق و موقعیت افقی توده ارایه می کند. استفاده صحیح از این روش مستلزم آگاهی از شکل توده زیرسطحی است که با انتخاب شاخص برای توده مورد مطالعه صورت می گیرد. در صورت عدم دقت در انتخاب شاخص ساختاری، در صور تیکه شاخص ساختاری بزرگتر انتخاب شود، میزان عمق تخمینی بیشتر و برعکس هرچه شاخص ساختاری کوچکتر باشد، باعث کاهش میزان عمق تخمینی خواهد شد (190,801,1910).





معاونت اكتشاف -مديريت اكتشافات ماحيه اي

به زبان ساده مشتق قائم میدان به صورت اختلاف میدان اندازه گیری شده در راستای قائم در ارتفاع بالاتر و میدان اندازه گیری شده در همان راستا در ارتفاع پایین تر تقسیم بر اختلاف ارتفاع بین دو نقطه تعریف می شود. مشتق قائم نقش بسیار مهم و کلیدی در تفسیر و پردازش دادههای مغناطیسی و گرانی دارد، از جمله:

۱- مشتق قائم اثر تغییرات روزانه میدان مغناطیسی را حذف می کند، زیرا محاسبهٔ آن مستلزم محاسبهٔ اختلاف میدان بین دو ارتفاع مختلف میباشد. این اثر بخصوص در مناطقی که در عرضهای جغرافیایی بالایی قرار دارند Gy y

حايز اهميت است.

۲- مشتق قائم دارای وضوح 'بیشتری نسبت به میدان اصلی میباشد.

کو تاہ (آنومالیہای سطحی) را تضعیف می کند.

طبق رابطه پواسون 'پتانسیل مغناطیسی و پتانسیل گرانی یک جسم با مغناطیس شوندگی و چگالی یکنواخت با هم ارتباط دارند. با استفاده از تبدیل شبه گرانی میتوان آنومالی گرانی ناشی از یک جسم مغناطیسی را از روی آنومالی مغناطیسی آن بدست آورد. تبدیل شبه گرانی تا حدی از پیچیدگی تفسیر دادههای مغناطیسی میکاهد و کار تفسیر را تسهیل می کند. تبدیل شبه گرانی تا حدی ماهیت فیلترهای پایین گذر را دارد، چون دامنه طول موجهای

¹ - Resolution

² - Poisson Relation



in La

er:

معاونت الثثاف -مديرت الثثافات ماجيه اي

فصل سوم

اندازه گیری داده ها و تجهیزات مورد استفاده

۳- ۱- برداشت داده ها

به منظور تدقیق محل گسل های شناخته شده و همچنین شناسایی گسل های مدفون شهر تبریز، چندین خطواره از سوی زمین شناس تکتونیک محدوده (دکتر اسماعیلی) در اختیار اکیپ ژئوفیزیک قرار گرفت. در این مطالعه، هدف تدقیق گسل های شناخته شده و همچنین آشکارسازی گسل های مدفون شهر تبریز و حومهی آن و می اشد. بدین منظور و با نظر کارشناس زمین شناس منطقه، ۱۹ پروفیل در نقاط مختلف مورد پوشش روش مقاومت و یژه الکتریکی قرار گرفت و به صورت همزمان برداشت های مغناطیس سنجی نیز انجام شد. برداشت داده های مغناطیس سنجی در این مطالعه با استفاده از دو دستگاه مغناطیس سنج صورت گرفت. یکی از دستگاه ها در منطقه به عنوان ایستگاه مینا جهت ثبت تغییرات روزانه شدت کل میدان مغناطیس و به منظور تصحیح روزانه داده های مغناطیس سنجی در این مطالعه با استفاده از دو دستگاه مغناطیس سنج صورت گرفت. یکی منطبق بر پروفیل های مقاومت و یژه الکتریکی در نظر گرفته شد. به منظور تعیین موقعیت ایستگاه ها در منطقه و یا منطبق بر پروفیل های مقاومت و یژه الکتریکی در نظر گرفته شد. به منظور تعیین موقعیت ایستگاه ها در منطقه و یا به دستگاه مغناطیس سنج استفاده شد. از این رو همزمان با برداشت داده ها، مختصات نقاط نیز برداشت شده تا جهت منطبق بر پروفیل های مقاومت و یژه الکتریکی در نظر گرفته شد. به منظور تعیین موقعیت ایستگاه ها از GPS متصل به دستگاه مغناطیس سنج استفاده شد. از این رو همزمان با برداشت داده ها، مختصات نقاط نیز برداشت شده تا جهت استفاده برای ترسیم نقشه ها استفاده شد. از این رو همزمان با برداشت داده ها، مختصات نقاط نیز برداشت شده تا جهت





معاونت اكتشاف -مديريت اكتشافات ماحيه اي

برداشت داده های مقاومت ویژه الکتریکی بر روی روندهای خطی مشاهده شده حاصل از مطالعات تکتونیک (عکس های هوایی، بازدیدهای میدانی و ...) صورت گرفت. پروفیل های مقاومت ویژه عمدتا عمود بر روی خطواره ها و گسل های شناسایی شده در نظر گرفته شد. در این مطالعه موقعیت مکانی ایستگاهها با استفاده از GPS دستی مشخص شد و تمامی داده های مقاومت ویژه الکتریکی مورد نیاز با استفاده از آرایش دوقطبی -دوقطبی GPS برداشت شد. مشخصات پروفیل های برداشتی، شامل طول آنها، موقعیت نقاط ابتدا و انتهای پروفیل ها، تعداد نقاط 

و فواصل ایستگاهی در جدول ۳-۱ آورده شده است.

ت (UTM-WGS84)	مختصاد	تعداد	كمينه فاصله	آرایش	طول (m)	پروفيل
انتها	ابتدا	نقاط	الكترودي			
8227AAT/ 82142VA 8229	19/ 4218094	٣٣٣	۵	دوقطبي-دوقطبي	۲۱.	<i>P1</i>
977V.F/ FT139FA 97701	12/ 6212697	84.	۵	دوقطبي-دوقطبي	220	P2
988009/ FRIETRA 9880	۴۸/ ۴۲۱۲۱۰۹	۸۳۲	۵	دوقطبي-دوقطبي	۲۳۰	Р3
9777879/ FY177VF 97791	F./ FTITIOV	٨6.	۵	دوقطبي-دوقطبي	۲۳۰	<i>P4</i>
878871/ FT1198. 8789	10/ 4211240	6.1	<b>S</b>	دوقطبي-دوقطبي	۱٩٠	P5
512542/ 42159.1 51200	Va/ FT1907F	1879	۵	دوقطبي-دوقطبي	۴۸.	<i>P6</i>
919189/ FT1FAR. 91911	rf/ fy1f9th	477	۵	دوقطبي-دوقطبي	۱٩٠	<i>P7</i>
919.9./ 421492. 919.0	9./4714011	176	۵	دوقطبي-دوقطبي	11.	<i>P8</i>
917.41/477177.91779	91/ 4221040	1009	۵	دوقطبي-دوقطبي	۳٩٠	P9
STTTVT/ FT1F9T1 STT11	r9/ f71f090	1.14	۵	دوقطبي-دوقطبي	40.	P10
5.9.5./ 42229.1 5.291	F•/ FTTTV•9	۸۵۶	۵	دوقطبي-دوقطبي	14.	P11
8.911F/ FTTTAIV 8.9.4	90/ 4222910	41.	۵	دوقطبي-دوقطبي	۲۳۰	P12
979099/ 471.479 97901	F9/ F71019V	۶۸۳	۵	دوقطبي-دوقطبي	۲۳.	P13
989FTA/ F810F98 989T	Fa/ F71087a	499	۵	دوقطبي-دوقطبي	19.	P14
SITTOI/FTTII91 /	422.900	۱۱۳۳	۵	دوقطبي-دوقطبي		P15
SITOTI/ FTT. PAT SITT	1./ 4779.	7.97	۵	دوقطبي-دوقطبي	390	<i>P16</i>
910./ 4220000 9	9./4220177	۷۸۱	۵	دوقطبي-دوقطبي	۲۳۰	<i>P17</i>
090.99/ 478.771 090.	•0/ 423•1••	۵۹۷	۵	دوقطبي-دوقطبي	19.	P18
090.99/ 474.70. 090.1	rq/ ftmvq	<b>930</b>	۵	دوقطبي-دوقطبي	۲	P19

جدول ۳-۱: مشخصات پروفیل های مقاومت ویژه الکتریکی





معاونت اكتثاف -مديريت اكتثافات ماجيه اي

موقعیت مکانی پروفیل های مقاومت ویژه به ترتیب در شکل های ۳-۱ و ۳-۲ و موقعیت پروفیل ها یا محدوده های برداشت مغناطیس سنجی بر روی عکس های هوایی در شکل های ۳- ۳ و ۳-۴ آورده شده است. علاوه بر این، موقعیت ایستگا ه های مقاومت ویژه برای همه پروفیل های مورد بررسی در پیوست الف آورده شده است.



معاونت اكتثاف -مديريت اكتثافات ماحيه اي



شکل ۳– ۱: موقعیت پروفیل های مقاومت ویژه (خطوط قرمز رنگ) در نواحی شرقی شهر تبریز بر روی عکس هوایی (بر گرفته از نرم افزار Google earth)

ژ نوفیزیک



معاونت اكتثاف -مديريت اكتثافات ماحيه اي



شکل ۳- ۲: موقعیت پروفیل های مقاومت ویژه (خطوط قرمز رنگ) در غرب شهر تبریز بر روی عکس هوایی (بر گرفته از نرم افزار Google earth)



معاونت اكتثاف -مديريت اكتثافات ماحيه اي



شکل ۳–۳: موقعیت برداشتهای معناطیس سنجی (محدودههای قرمز رنگ) در نواحی شرقی شهر تبریز بر روی عکس هوایی (بر گرفته از نرم افزار Google earth)

ژ نوفیزیک



معاونت اكتثاف -مديريت اكتثافات ماحيه اي



شکل ۳- ۴: موقعیت برداشتهای مغناطیس سنجی (محدودههای قرمز رنگ) در غرب شهر تبریز بر روی عکس هوایی (بر گرفته از نرم افزار Google earth)

ژ نوفیزیک



معاونت اكتشاف -مديريت اكتشافات ناحيه اي

۳- ۲- تجهیزات

## ۳- ۲- ۱- تجهیزات روش مقاومت ویژه الکتریکی

جهت انجام برداشت های مقاومت ویژه از دستگاه ARES ساخت شرکت GF Instruments کشور جمهوری چک استفاده شده است. بیشینه جریان و ولتاژ قابل تأمین توسط این دستگاه به ترتیب ۵ آمپر و ۲۰٬۰۰ ولیک بوده و توان فرستنده آن حداکثر تا ۸۵۰ وات می باشد. همچنین این دستگاه قابلیت اندازه گیری داده های SP، IP و مطالعات درون چاهی به صورت دو بعدی و سه بعدی را دارا می باشد. از مزایای قابل توجه آن می توان به ۶ قطعه کابل همراه که مجموعاً اندازه گیری در ۴۸ کانال را میسر می سازند، اشاره کرد. وجود این کابل، همراه با جابه جايي اتوماتيك فواصل ميان الكترودي توسط دستگاه، امكان اندازه گيري تعداد نقاط زياد همراه با صرفه جويي در وقت و هزینه را امکان پذیر می سازد. از طرفی با ذخیره ضریب هندسی بسیاری از آرایش های الکترودی مرسوم نظير ونر الفا، بتا و گاما، ونر – شلومبر گر، دوقطبی – دوقطبی، قطبی – دوقطبی، قطبی – قطبی در حافظه آن، مقاومت ویژه الکتریکی ظاهری به صورت اتوماتیک محاسبه شده و حین اندازه گیری در صفحه نمایش آن قابل مشاهده خواهد بود. نرم افزار پشتیبانی کننده این دستگاه نیز قابلیت ارسال داده های اندازه گیری شده با فرمت ورودی نرم افزارهای IPI2win، Res3Dinv و Surfer، Res3Dinv و دیگر نرم افزارهای کاربردی ژئوفیزیک را دارا می باشد. این دستگاه با یک باتری ۱۲ولتی کار می کند و وزن کلی دستگاه ۵/۹ کیلو گرم بوده که ابعاد آن برابر ۴۰ ۲۱ ۱۵ سانتيمتر مي باشد (شكل ٣-۴).




معاونت اكتثاف -مديريت اكتثافات ناحيه اي



# شکل ۳-۴: دستگاه ARES و تصویری از عملیات برداشت



شکل ۳- ۵: نمایی از برداشت به روش مقاومت ویژه با دستگاه ARES به همراه کابل روی پروفیل ۶

ژنو**فیزیک** 



معاونت اكتثاف -مديريت اكتثافات ماحه اي

## ۳- ۲- ۲- تجهیزات روش مغناطیس سنجی

دستگاههای اندازه گیری در روش مغناطیس سنجی به سه دسته واریومترهای مغناطیسی، مغناطیسسنج فلاکس گیت (دروازه شار)، مغناطیسسنج شتاب هستهای و بخار روبیدیم تقسیمبندی میشوند. پیشرفتهترین و جدیدترین نوع مغناطیس سنج مدل Smartmag ساخت شرکت Scintrex کشورکانادا است که با استفاده از بخار سزیم کار می کند. این دستگاه دارای حساسیت بسیار بالا و در حد ۰/۰۱ گاما می باشد و برای کشف بی هنجاری های باستانشناسی کاربرد فراوانی دارد. واحد اندازه گیری شدت میدان مغناطیسی، گاما یا همان نانوتسلا است. مغناطیس سنجهای با حساسیت و ظرافت کمتر برای عملیات معدنی بسیار مناسب تر است. در این مطالعه از دستگاه مغناطیس سنج پروتون GEM مدل GSM-19T که دارای دقت ۰/۰۵ گاما است، استفاده شده است (شکل ۳-۹).



شکل ۳-۶: مغناطیس سنج GEM مدل GSM-19T





معاونت اكتشاف -مديريت اكتشافات ماجيه اي



شکل ۳–۷: برداشت داده های مغناطیس سنجی در محدوده پروفیل های ۱۸ و ۱۹ مقاومت ویژه

## ۳-۳- نحوه پردازش، مدل سازی و نمایش داده ها

یکی از تصحیحات اولیه حذف اندازه گیری های نامتعارف (Outliers) می باشد. در برداشت های مغناطیس سنجی این قرائت ها عمدتاً در ارتباط با سازه های فلزی موجود در محدوده برداشت بوده و قبل از پردازش های ابتدایی نیز بایستی حذف شوند. در محدوده های مورد برداشت به دلیل قرار گرفتن اکثر محدوده های فوق در محیط شهری و قرار گیری خطوط انتقال نیرو، دکل های برق و همچنین لوله های مدفون گاز، تعداد محدودی از داده های نامتعارف و جود داشته که در بررسی های اولیه حذف شدهاند. همانطور که ذکر شد یک دستگاه مغناطیس سنج در ایستگاه مبنا (شکل ۳–۸) در تمام روزهای برداشت مستقر بوده و تغییرات شدت میدان مغناطیسی را به صورت مرتب به ازاء هر ۶۰ ثانیه، همزمان با برداشت در ایستگاه های متحرک، ثبت کرده است. نمودار تغییرات شدت میدان مغناطیس در تاریخ ۱۳۹۹/۰۷/۰۴ در شکل ۳–۹ به نمایش در آمده است. با استفاده از دادههای ایستگاه مبنا،





معاونت اكتثاف -مديريت اكتثافات ناحيه اي

تصحیحات به صورت روزانه برای تمام روزهای برداشت انجام شده است. پس از ویرایش اولیه و انجام تصحیحات

روزانه، دادههای مغناطیس سنجی در صورت نیاز همتراز (Levelling) شدهاند.



شکل ۳–۸: اندازه گیری دادهها در ایستگاه مبنا



شکل ۳-۹: تغییرات شدت کل میدان مغناطیسی ایستگاه مبنا در تاریخ ۱۳۹۹/۰۷/۰۴



معاونت اكتثاف -مديريت اكتثافات ماجه اي

اطلاعات مغناطیس سنجی به همراه مختصات نقاط برداشت در رایانه توسط نرم افزار OASIS MONTAJ مورد پردازش قرار گرفته است. تغییرات میدان مغناطیسی با استفاده از مقیاس رنگی و با تکنیک IMAGE SHADOW به گونهای رسم شده که کمترین شدت میدان با رنگ آبی و به تدریج با افزایش شدت کل میدان مغناطیسی به رنگهای سبز – زرد– نارنجی – قرمز و بنفش نمایش داده شود.

یکی از متداول ترین و پیشرفته ترین روش ها در مدلسازی داده های ژئوفیزیک، مدلسازی وارون است که با روش ها و الگوریتم های گوناگونی صورت می پذیرد. همانطور که از نام این مدلسازی برمی آید، در برابر مدلسازی مستقیم قرار دارد. در این نوع مدلسازی فرایند محاسبات با شروع از یک مدل ساده و یا استفاده از نتایج مطالعاتی مانند زمین شناسی و ژئوتکنیک یک مدل اولیه فرضی بدست می آید. سپس با تغییر پارامترهای مدل در هر مرحله از فر آیند وارون سازی، سعی بر این است که اختلاف مابین پاسخ مدل حاصل با داده های مشاهده ای کمینه شود. از آنجا که عموماً در مسائل ژئوفیزیک مدل های بیشماری به داده های مشاهده ای قابل برازش هستند، لذا قیودی از جمله همواری مدل نیز در حین انجام محاسبات عددی در نظر گرفته می شود. در مدلسازی وارون بعد از تعیین پارامترهای مدل تمامی مراحل مدلسازی به صورت خودکارانجام می شود. در وارون سازی دوبعدی داده های مقاومت ویژه در این مطالعه به ترتیب از نرم افزار Res2Dinv از محبوب ترین و شناخته شده ترین نرم افزار ها در این زمینه، استفاده شده است. درنهایت برای تفسیر ترکیبی اطلاعات و نمایش مطلوب نقشه ها، مدلها و مقاطع از در این زمینه، استفاده شده است. درنهایت برای تفسیر ترکیبی اطلاعات و نمایش مطلوب نقشه ها، مدلها و مقاطع از در این زمینه، استفاده شده است. درنهایت برای تفسیر ترکیبی اطلاعات و نمایش مطلوب نقشه ها، مدلها و مقاطع از نرم افزارهای Global mapper و Global mapper نیز است.





معاونت اكتثاف -مديريت اكتثافات ناحيه اي

فصل چهارم بررسی نتایج همانطورکه ذکر شد برای تدقیق گسل های شهر تبریز و آشکارسازی گسل های مدفون از مطالعات مغناطیس سنجی و مقاومت ویژه الکتریکی (با استفاده از آرایش دوقطبی- دوقطبی) استفاده شد. به دلیل محدودیت هاي مكاني موجود در شهر و همينطور گستره وسيع مورد مطالعه، موقعيت پروفيل هاي مورد بررسي در نقاط مختلف واقع شده است (شکل های ۳–۱ تا ۳–۴). از این روبرای نام گذاری مناطق مورد بررسی از اسامی پروفیل های مقاومت ویژه استفاده شده که به ترتیب برداشت نامگذاری شده اند. در ادامه هر یک از پروفیل های مورد مطالعه را به صورت مجزا مورد بررسي قرار ميدهيم. ٤- ۱- پروفیلهای شماره ۱ و ۲ ٤- 1- 1- مطالعات مغناطیس سنجی در شکل های ۳–۱ و ۳–۳ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه در پروفیل-های ۱ و ۲ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴–۱ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان



معاونت اكتثاف -مديريت اكتثافات ناحيه اي

مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۴۸۰ و ۴۸۲۶۶ گاما بوده و حد زمینه در این منطقه ۴۸۳۶۱ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل مغناطیسی اندازه گیری شده برابر با ۲۱۴ گاما میباشد.

همانطور که در شکل ۴–۱ مشاهده می شود، تغییرات شدت میدان مغناطیس خیلی بالا نیست. با این حال، چند ناحیه با شدت نسبی بالاتر (طیف رنگی قرمز رنگ) در نقاط مختلف نقشه قابل تشخیص است. از آنجا که محدوده مورد مطالعه مملو از نخاله های ساختمانی بوده، تغییرات محلی شدت مغناطیس و تا حدی آلوده به نویز بودن داده ها مورد انتظار بوده است. با این حال، چند روند خطی در نقشه شدت کل مغناطیس (شکل ۴–۱) قابل تشخیص می باشد. این خطواره های مغناطیسی که احتمالا ناشی از عملکرد گسل های مختلف در این ناحیه اند، با خط چین های سفید رنگ در شکل ۴–۱ مشخص شده اند. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل های ۱ و ۲ با مثلث های سیاه رنگ در شکل ۴–۱ به نمایش در آمده است.



شکل ۴–۱: نقشه شدت کل میدان مغناطیس در محدوده پروفیل های ۱ و ۲ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژنوف<u>نری</u>ک



معاونت اكتشاف -مديريت اكتشافات ماجيه اي

٤- ١- ٢- مطالعات مقاومت ويژه

در شکل ۴-۲ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۱ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۱/۲۲ و ۲۷۲/۳ اهم متر میباشد. مقادیر مزبور مقاومت ویژه ظاهری مشاهده ای بوده و طبیعتاً مقادیر حاصل از وارون سازی داده ها متفاوت خواهد بود. همانطور که در مدل وارون (شکل ۴–۲ ) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل نسبتاً بالا است. به نحوی که بیشینه مقاومت ویژه مشاهده شده از ۲۰۰۰ اهم متر فراتر است. این مسئله از واقع شدن واحد های سنگی در اعماق کم ناشی شده است. علاوه بر این، وجود نخاله های ساختمانی در سطح زمین، دلیل افزایش مقادیر مقاومت ویژه در نواحی سطحی است. چند ناپیوستگی در مدل مقاومت ویژه قابل تشخیص است که می توانند ناشی از عملکرد گسل ها در این ناحیه باشند. نا پیوستگی های مزبور با خط چین های سفید رنگ در شکل ۴–۲ مشخص شده اند. موقعیت گسل ها از مطالعات تکتونیک و خطوار دهای حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، گسلی که در مطالعات تکتونیک مشاهده شد، توسط داده های مقاومت ویژه و مغناطیس سنجی تأیید می شود. علاوه بر گسل مزبور یک ناپیوستگی دیگر یک ناپیوستگی دیگر در انتهای پروفیل قابل تشخیص می باشد. 





وزارت صنعت. معن و نیارت ساز هان ز مین شناسی و اکتشافات معدنی کشور Ministry of Industry, Mine and Trade Geological Survey of Iran

معاونت اكتثاف -مديريت التثافات ماحيه اي

در شکل ۴-۳ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۲ آورده شده است. کمینه و بیشینه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۲۰۰۵ و ۲۸۹/۵ اهم متر می باشد. همانطور که در مدل وارون (شکل ۴-۳) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل اندکی کمتر از پروفیل ۱ می باشد. به نحوی که بیشینه مقاومت ویژه از ۱۰۰۰ اهم متر کمتر است. بر خلاف پروفیل اندکی کمتر از پروفیل نخاله های ساختمانی قابل توجهی در سطح زمین مشاهده متر کمتر است. بر خلاف پروفیل ۱، در محل این پروفیل نخاله های ساختمانی قابل توجهی در سطح زمین مشاهده نمی شود. با این حال، چند ناپیوستگی در مدل مقاومت ویژه قابل تشخیص است که می توانند ناشی از عملکرد گسل ها در این ناحه باشند. نا پیوستگی های مزبور با خط چین های سیاه رنگ در شکل ۴-۳ مشخص شده اند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، گسلی که در مطالعات تکتونیک (فلش قرمز رنگ) مشاهده شد، با اندکی چابه جایی توسط داده های مقاومت ویژه و مغناطیس سنجی نیز تأیید می شود. علاوه بر گسل مزبور چند تاپیوستگی دیگر نیز مشخص شده و دو ناپیوستگی ابندایی با







معاونت اكتثاف -مديرت اكتثافات ماجه اي

٤- ۲- پروفیل های ۳ و ٤

٤- ٢ - ١- مطالعات مغناطيس سنجى

در شکل های ۳-۱ و ۳-۳موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل های ۳ و ۴ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴-۴ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۵۲۴ و ۴۸۲۲۵ گاما بوده و حد زمینه در این منطقه ۴۸۳۸۹ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت کل مغناطیسی اندازه گیری شده برابر با ۲۹۹ گاما میباشد.

همانطور که در نقشه شدت کل مغناطیسی (شکل ۴ ۴) مشاهده می شود، تغییرات شدت میدان مغناطیس اندکی بالاتر از محدوده قبلی است. این مسئله از حضور نهشته های رسوبی عهد حاضر بر روی واحد های رسوبی (عمدتا ماسه سنگ ها، مارن ها، شیل ها و کنگلومرای قرمز رنگ) ناشی شده است. یک ناحیه با شدت نسبی بالاتر (طیف رنگی قرمز رنگ) در مرکز نقشه قابل تشخیص است. با توجه به شدت نسبی داده های مغناطیس سنجی، حضور واحد آذرین (احتمالا تراکی آندزیت) در عمق و زیر نهشته های رسوبی نیز دور از انتظار نیست. با این حال، حضور کانه های مغناطیسی و رنگ قرمز واحدهای رسوبی می تواند مسبب ایجاد خواص مغناطیسی (حتی از نوع بازماند) در واحدهای رسوبی باشد. به نظر می رسد عملکرد گسل در این ناحیه سبب ایجاد یک همبری و قرار گیری دو واحد مختلف زمین شناسی در کنار هم بوده است. همانطور که مشاهده می شود، یک روند خطی اصلی در نقشه شدت کل مغناطیس (شکل ۴–۴) قابل تشخیص می باشد. این خطواره مغناطیسی که ناشی از عملکرد گسلی در این



معاونت اكتثاف -مديريت التثافات ماحيه اي

ناحیه است، با خط چین سفید رنگ در شکل ۴-۴ مشخص شده است. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل های ۱ و ۲ با مثلث های سیاه رنگ در شکل ۴-۴ به نمایش در آمده است.

به منظور تفسیر بهتر و تعیین مرز مابین ساختارهای زیر سطحی، نقشه شدت کل میدان مغناطیس به قطب بر گردانده

شده و نتیجه در شکل ۴–۵ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف مغناطیسی طبق استاندارد جهانی در محل انجام برداشتها عبارت است از:

Inclination=57.03, Declination=5.78





شکل ۴–۴: نقشه شدت کل میدان مغناطیس در محدوده پروفیل های ۳ و ۴ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژ نوفیزیک







شکل ۴–۵: نقشه بر گردان به قطب مغناطیسی در محدوده پروفیل های ۳ و ۴ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژ نوفیزیک



معاونت اكتثاف -مديرت اكتثافات ماجه اي

٤- ٢- ٢- مطالعات مقاومت ويژه

در شکل ۴-۹ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۳ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۰/۹۶ و ۱۲۰ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴–۶ ) مشاهده 🧟 شود، گستره تغییرات مقاومت ویژه در طول این پروفیل نسبتاً پایین است. به نحوی که بیشینه مقاومت ویژه مشاهده شده از ۳۰۰ اهم متر فراتر نیست. این مسئله ناشی از گسترش نهشته های آبرفتی و واحد های رسوبی خرد شده است. ناحیه با مقاومت ویژه بالا (طیف رنگی قرمز) در فاصله ایستگاهی ۴۰ تا ۸۰ متری پروفیل، منطبق بر نواحی با شدت مغناطیس بالا در نقشه بر گردان به قطب (شکل ۴-۵) می باشد. تغییرات مقاومت ویژه در این ناحیه، محدوده گسلش و خردشدگی واحدهای رسوبی در این ناحیه را تأیید می کند. علاوه بر این، چند ناپیوستگی در مدل مقاومت ویژه قابل تشخیص است که می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. نا پیوستگی های مزبور با خط چین های سیاه رنگ در شکل ۴-۶ مشخص شده اند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله حدود ۵۰ متری از همبری موجود در مدل وارون مقاومت ويژه و خطواره حاصل از مطالعات مغناطيس سنجي (فلش سياه رنگ) مشاهده مي شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در یک پهنه گسلی قابل تشخیص می باشند.





وزارد منتد. معن و نجارت سازمان زمین شناسی و اکتشافات معدنی کشور Misitry of Industry, Mise and Trade Geological Survey of Iran

معاونت اكتثاف -مديريت التثافات ماحيه اي

در شکل ۴–۷ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۴ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۸۴ و ۱۶۹/۴ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴–۷) مشاهده مي شود، گستره تغييرات مقاومت ويژه در طول اين پروفيل مقداري بالاتر از پروفيل قبلي است. به نحوي که بیشینه مقاومت ویژه مشاهده شده از ۵۰۰ اهم متر فراتر است. همانند پروفیل ۳، این مسئله ناشی از گسترش نهشته های آبرفتی و واحد های رسوبی خرد شده است. ناحیه با مقاومت ویژه بالا (طیف رنگی قرمز) در فاصله ایستگاهی ۵۰ تا ۱۰۰ متری پروفیل، منطبق بر نواحی با شدت مغناطیس بالا در نقشه بر گردان به قطب (شکل ۴–۵) می باشد. تغییرات مقاومت ویژه در این ناحیه، گسلش، خردشدگی و حتی وجود همبری مابین واحدهای رسوبی در این ناحیه را تأیید می کند. علاوه بر این، چند ناپیوستگی در مدل مقاومت ویژه قابل تشخیص است که می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. نا پیوستگی های مزبور با خط چین های سیاه رنگ در شکل ۴-۷ مشخص شده اند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله حدود ۲۰ متری از همبری مقاومت ویژه و ۵۰ متری از خطواره حاصل از مطالعات مغناطیس سنجی (فلش سیاه رنگ) مشاهده میشود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در یک پهنه گسلي قابل تشخيص مي باشند.







معاونت اكتثاف -مديريت اكتثافات ناحيه اي

٤- ۳- پروفیل شماره ٥

٤- ٣ - ١- مطالعات مغناطيس سنجى

در شکل های ۳-۱ و ۳-۳ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل ۵ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴-۸ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۴۶۷ و ۴۸۲۱۲ گاما بوده و حد زمینه در این منطقه ۴۸۳۷۷ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل معناطیسی شده برابر با ۲۵۵ گاما می باشد.

همانطور که در شکل ۴-۸ مشاهده می شود، تغییرات شدت میدان مغناطیس خیلی بالا نیست. با این حال، دو ناحیه با شدت نسبی بالاتر (طیف رنگی قرمز رنگ) در شمال و جنوب نقشه قابل تشخیص است. به نظر می رسد ناحیه با شدت مغناطیس پایین در مرکز نقشه، تحت تاثیر سامانه گسلی بوده است. علاوه بر این، چند روند خطی در نقشه شدت کل مغناطیس (شکل ۴-۸) قابل تشخیص می باشد. این خطواره های مغناطیسی که احتمالا ناشی از عملکرد سامانه گسلی در این ناحیه است، با خط چین های سفید رنگ در شکل ۴-۸ مشخص شده اند. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل ۵ با مثلث های سیاه رنگ در شکل ۴-۸ به نمایش در آمده است. به منظور تعیین دقیق تر محل واقعی ساختارهای زیرسطحی، نقشه شدت کل میدان مغناطیس به قطب بر گردانده شده و نتیجه در شکل ۴-۹ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف مغناطیسی

Inclination=57.03, Declination=5.78

ژ نوفیزیک



معاونت اكتثاف -مديريت اكتثافات ناحيه اي



شکل ۴-۸ نقشه شدت کل میدان مغناطیس در محدوده پروفیل ۵ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند. ژوفیزیک



معاونت اكتثاف -مديريت اكتثافات ناحيه اي



شکل ۴-۹: نقشه برگردان به قطب مغناطیسی در محدوده پروفیل ۵ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند. **ژوفیزیک** 



معاونت اكتشاف -مديرت اكتشافات ماجه اي

٤- ٣ -٢- مطالعات مقاومت ويژه

در شکل ۴–۱۰ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۵ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۱/۴ و ۳۹۸ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل۴-۲۰ مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل مقداری بالاتر از دو پروفیل قبلی است. به نحوی که بیشینه مقاومت ویژه فراتر از ۱۵۰۰ اهم متر می باشد. همانند پروفیل های ۳ و ۴، تغییرات مقاومت ویژه در ارتباط با گسترش نهشته های آبرفتی و خردشدگی واحد های رسوبی تفسیر می شود. ناحیه با مقاومت ویژه بالا (طیف رنگی قرمز) در فاصله ایستگاهی ۲۰ تا ۶۰ متری پروفیل، منطبق بر نواحی با شدت مغناطیس بالا در نقشه بر گردان به قطب (شکل ۴–۹) می باشد. تغییرات مقاومت ویژه، وجود همبری مابین واحدهای رسوبی در این ناحیه را تأیید می کند. علاوه بر این، چند ناییوستگی در مدل مقاومت ویژه قابل تشخیص است که می توانند ناشی از عملکر د سامانه گسلی در این ناحیه باشند. نا پیوستگی های مزبور با خط چین های سیاه رنگ در شکل ۴–۱۰ مشخص شده اند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله حدود ۲۰ متری از همبری مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند.







معاونت اكتشاف -مديريت اكتشافات ناحيه اي

٤- ٤- پروفیل شماره ٦

٤- ٤- ١- مطالعات مغناطيس سنجى

در شکل های ۳–۱ و ۳–۳ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل ۶ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴–۱۱ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۵۲۸ و ۴۸۴۹۹ گاما بوده و حد زمینه در این منطقه ۴۸۵۱۸ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت کل مغناطیسی اندازه گیری شده برابر با ۲۹ گاما میباشد.

همانطور که در شکل ۴–۱۱ مشاهده می شود، تغییرات شدت میدان مغناطیس خیلی پایین است. این مسئله ناشی از رخنمون واحد های رسوبی و با خواص مغناطیسی پایین در کنار یکدیگر می باشد. با این حال، ساختارهای واقع در شمال شرق محدوده از خواص مغناطیس نسبی بالاتری (طیف رنگی قرمز رنگ) برخوردار می باشند. علاوه بر این چند روند خطی در نقشه شدت کل مغناطیس (شکل ۴–۱۱) قابل تشخیص می باشد. این خطواره های مغناطیسی که احتمالا ناشی از عملکرد گسل های مختلف در این ناحیه اند، با خط چین های سفید رنگ در شکل ۴–۱ مشخص شده اند موقعیت ایستگاه های مقاومت ویژه در طول پروفیل ۶ با مثلث های سیاه رنگ در شکل ۴– ۱۱ به نمایش در آمده است.

به منظور تعیین محل دقیق تر ساختارهای زیرسطحی، نقشه شدت کل میدان مغناطیس به قطب بر گردانده شده و نتیجه در شکل ۴–۱۲ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف مغناطیسی طبق استاندارد جهانی در محل انجام برداشتها عبارت است از:



معاونت اكتثاف -مديريت اكتثافات ناحيه اي

#### Inclination=57.03, Declination=5.78



شکل ۴–۱۱: نقشه شدت کل میدان مغناطیس در محدوده پروفیل ۶ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژ**ئوفیزیک** 



معاونت اكتثاف -مديريت اكتثافات ناحيه اي



شکل ۴–۱۲: نقشه برگردان به قطب مغناطیسی در محدوده پروفیل ۶ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژنو**فیز**یک



معاونت اكتثاف -مديرت اكتثافات ماجه اي

#### ٤- ٤- ٢- مطالعات مقاومت ويژه

در شکل ۴–۱۳ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال تویو گرافی سطح زمین در طول پروفیل ۶ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۴/۶۵ و ۳۲۸۳ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل۴–۹۳ مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل خیلی بالا نیست. به نحوی که بیشینه مقاومت ویژه فراتر از ۶۰۰ اهم متر نمی باشد. همانند پروفیل های قبلی، تغییرات مقاومت ویژه در ارتباط با گسترش نهشته های آبرفتی و خردشد کی واحد های رسوبی تفسیر می شود. ناحیه با مقاومت ویژه بالا (طیف رنگی قرمز) در فاصله ایستگاهی ۲۰۰ تا انتهای پروفیل، منطبق بر نواحی با شدت نسبی بالاتر در نقشه بر گردان به قطب مغناطیسی (شکل ۴-۱۲) می باشد. تغییرات مقاومت ویژه، عمدتا در ارتباط با شکستگی و گسلش در واحدهای رسوبی تفسیر می شود. ناييوستگي و گسلش هاي احتمالي كه با خط چين هاي سياه رنگ در شكل ۴–۱۳ مشخص شده اند، مي توانند ناشي از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله از همبری های اصلی مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند. Je je





شکل ۴–۱۳: مدل حاصل از وارون سازی دوبعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۶. موقعیت گسل ها از مطالعات تکتونیک و خطواره های مغناطیسی به ترتیب با پیکان های قرمز و سیاه رنگ مشخص شده اند.

ژنوفیزیک 99



معاونت اكتشاف -مديرت اكتشافات ماجه اي

٤- ٥- پروفیلهای شماره ۷ و ۸

٤- ٥- ١- مطالعات مغناطيس سنجى

در شکل های ۳-۱ و ۳-۳ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل های ۷ و ۸ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴-۱۴ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۷۹۴ و ۴۶۲۹۸ گاما بوده و حد زمینه در این منطقه ۴۸۴۸۰ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل مغناطیسی اندازه گیری شده برابر با ۲۴۹۶ گاما می باشد.

همانطور که در شکل ۴–۱۴ مشاهده می شود، تغییرات شدت میدان مغناطیس خیلی بیشتر از محدوده های قبلی است. این مسئله ناشی از حضور ضایعات فلزی مدفون و در سطح زمین در قسمت شمالی غرب محدوده میباشد. صرف نظر از بی هنجاری مشخص شده در شمال غرب نقشه، تغییرات شدت میدان مغناطیس در سایر نقاط مشابه سایر نواحی مورد مطالعه است. این مسئله ناشی از حضور نهشته های آبرفتی بر روی واحد های سنگی رسوبی و با خواص مغناطیسی پایین می باشد. با این حال، چند روند خطی در نقشه شدت کل مغناطیس (شکل ۴–۱۴) قابل تشخیص می باشد. این خطواره های مغناطیسی که احتمالا ناشی از عملکرد گسل های مختلف در این ناحیه اند، با خط چین های سفید رنگ در شکل ۴–۱۴ مشخص شده اند. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل های ۷ و ۸ با مثلث های سیاه رنگ در شکل ۴–۱۴ مشخص شده اند. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل





معاونت اكتثاف -مديريت اكتثافات ناحيه اي

به منظور تعیین محل دقیق تر ساختارهای زیرسطحی، نقشه شدت کل میدان مغناطیس به قطب بر گردانده

شده و نتیجه در شکل ۴–۱۵ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف مغناطیسی طبق

استاندارد جهانی در محل انجام برداشتها عبارت است از:

Inclination=57.06, Declination=5.79

in the time the time









شکل ۴–۱۴: نقشه شدت کل میدان مغناطیس در محدوده پروفیل های ۷ و ۸ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژ نوفیزیک







شکل ۴–۱۵: نقشه برگردان به قطب مغناطیسی در محدوده پروفیل های ۷ و ۸ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژنوفیزیک



معاونت اكتثاف -مديريت اكتثافات ماجه اي

٤- ٥- ٢- مطالعات مقاومت ویژه پروفیل های ۲ و ۸

در شکل ۴–۱۶ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۷ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۲/۸ و ۲۰۹۱۰ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل۴–۹۶) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل کمتر از محدوده قبلی است. به نحوی که بیشینه مقاومت ویژه فراتر از ۲۰۰ اهم متر نمی باشد. این مسئله ناشی از ضخامت قابل توجه نهشته های آبرفتی در محل این پروفیل می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر اندازه دانه های رسوبی بواسطه فرایند رسوب گذاری و همچنین گسلش های احتمالی در نهشته های رسوبی تفسیر می شود. نا پیوستگی هایی که با خط چین های سیاه رنگ در شکل ۴–۱۶ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله حدودی ۱۵ تا ۳۵ متری از همبری های مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند. 






معاونت اكتشاف -مديريت اكتشافات ماحيه اي

در شکل ۴–۱۷ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۸ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۳/۹ و ۳/۹ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴–۱۷) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل، حتی کمتر از مقادیر مشاهده شده در طول پروفیل ۷ می باشد. به نحوی که بیشینه مقاومت ویژه فراتر از ۱۰۰ اهم متر نمی باشد. این مسئله ناشی از حضور نهشتههای ریزدانه و ضخامت قابل توجه نهشته های آبرفتی در محل این پروفیل می باشد. این مسئله ناشی از حضور در طول پروفیل ۷ می باشد. به نحوی که بیشینه مقاومت ویژه فراتر از ۱۰۰ اهم متر نمی باشد. این مسئله ناشی از حضور مهای احتوالی در زدانه و ضخامت قابل توجه نهشته های آبرفتی در محل این پروفیل می باشد. این مسئله ناشی از مقاومت ویژه مای احتمالی در نهشته های رسوبی تفسیر می شود. ناپیوستگی هایی که با خط چین های سیاه رنگ در شکل ۴– ۱۷ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت خطواره های حاصل از نقشه های مغناطیس سنجی با پیکان های سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. در محل این پروفیل، گسلی در مطالعات تکتونیک مشاهده نشده است. با این حال، خطواره مشاهده شده در مطالعات مغناطیس

سنجی تقریبا منطبق بر همبری مقاومت ویژه می باشد.







معاونت اكتثاف -مديريت اكتثافات ناحيه اي

٤- ٦- پروفیل شماره ٩

٤- ٦- ١ مطالعات مغناطیس سنجی

در شکل های ۳–۲ و ۳–۴ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل ۹ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴–۱۸ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۶۳۰ و ۴۸۳۱۵ گاما بوده و حد زمینه در این منطقه ۴۸۴۷۲ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل مغناطیسی شده برابر با ۳۱۵ گاما میباشد.

همانطور که در شکل ۴-۱ مشاهده می شود، تغییرات شدت میدان مغناطیس نسبتا بالا است. این مسئله ناشی از رخنمون واحد های مختلف رسوبی و با خواص مغناطیسی مختلف در کنار یکدیگر می باشد. ساختارهای واقع در جنوب غرب محدوده از خواص مغناطیس نسبی بالاتری (طیف رنگی قرمز رنگ) برخوردار می باشند. این مسئله ناشی از همبری واحدهای مارنی (در نیمه شمال شرقی محدوده) با تپه ماهورهایی است که از نهشته های آبرفتی پوشیده هستند. به نظر زیر این نهشته های آبرفتی، واحدهای رسوبی از جنس ماسه سنگ ها، شیل ها و کنگلومراهای قرمز قرار گرفته اند. علاوه بر این چند روند خطی در نقشه شدت کل مغناطیس (شکل ۴–۱۱) قابل تشخیص می باشد. این خطواره های مغناطیسی که احتمالا ناشی از عملکرد گسل های مختلف در این ناحیه اند، با خط چین های سفید رنگ در شکل ۴–۱۸ مشخص شده اند. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل ۹ و همچنین بر خی از ایستگاه های پروفیل ۱۵ (در جنوب شرق نقشه) با مثلث های سیاه رنگ در شکل ۴–۱۸ به نمایش در آمده است.





معاونت اكتثاف -مديريت اكتثافات ناحيه اي

به منظور تعیین محل دقیق تر ساختارهای زیرسطحی، نقشه شدت کل میدان مغناطیس به قطب بر گردانده

شده و نتیجه در شکل ۴–۱۹ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف مغناطیسی طبق

استاندارد جهانی در محل انجام برداشتها عبارت است از:

Inclination=57.12, Declination=5.81

in it is the it









شکل ۴–۱۸: نقشه شدت کل میدان مغناطیس در محدوده پروفیل ۹ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژ نوفیزیک







شکل ۴–۱۹: نقشه برگردان به قطب مغناطیسی در محدوده پروفیل ۹ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژنو**فیز**یک



معاونت اكتشاف -مديريت اكتشافات ماجه اي

## ٤- ٦- ٢- مطالعات مقاومت ويژه

در شکل ۴–۲۰ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۹ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۲/۳– و ۲۹۵ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل۴–۴۰ مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل، بیشتر از مقادیر مشاهده شده در طول پروفیل های ۷ و ۸ می باشد. به نحوی که بیشینه مقاومت ویژه آن فراتر از ۲۵۰ اهم متر نمی باشد. این مسئله ناشی از حضور نهشته های آبرفتی بر روی واحدهای رسوبی هوازده و همچنین رخنمون مارن های قرمز می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر اندازه دانه های رسوبی بواسطه فرایند رسوب گذاری، تغییر جنس واحدهای رسوبی و همچنین، شکستگی های احتمالی در آنها تفسیر می شود. ناحیه با مقاومت ویژه پایین (طيف آبي رنگ در فاصله ايستگاهي ٧٠- تا ٠) در انتهاي پروفيل، منطبق بر ناحيه با خواص مغناطيس پايين در نقشه بر گردان به قطب (شکل ۴–۱۹) می باشد. این ناحیه در ارتباط با مارن های قرمز و پهنه گسلی خرد شده در این ناحیه به نظر می رسد. ناپیوستگی و گسلش های احتمالی که با خط چین های سیاه رنگ در شکل ۴-۲۰ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله حدودی ۵۰ متری از همبری اصلی مقاومت ویژه مشاهده میشود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند.





ژنوفیزیک



معاونت اكتشاف -مديريت اكتشافات ناحيه اي

٤- ۷- پروفیل شماره ۱۰

٤- ٧- ١ مطالعات مغناطيس سنجى

در شکل های ۳–۱ و ۳–۳ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل ۱۰ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴–۲۱ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۵۱۸ و ۴۸۴۸۹ گاما بوده و حد زمینه در این منطقه ۴۸۵۰۳ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت کل مغناطیسی اندازه گیری شده برابر با ۲۹ گاما میباشد.

همانطور که در شکل ۴–۲۱ مشاهده می شود، تغییرات شدت میدان مغناطیس خیلی پایین است. این مسئله ناشی از رخنمون واحد های رسوبی و با خواص مغناطیسی پایین در کنار یکدیگر می باشد. با این حال، نواحی شمالی محدوده از خواص مغناطیس نسبی بالاتری (طیف رنگی قرمز رنگ) برخوردار می باشند. علاوه بر این چند روند خطی در نقشه شدت کل مغناطیس (شکل ۴–۲۱) قابل تشخیص می باشد. این خطواره های مغناطیسی که احتمالا ناشی از عملکرد گسل های مختلف در این ناحیه اند، با خط چین های سفید رنگ در شکل ۴–۲۱ مشخص شده اند. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل ۱۰ با مثلث های سیاه رنگ در شکل ۴–۲۱ به نمایش در آمده است.

به منظور تعیین محل دقیق تر ساختارهای زیرسطحی، نقشه شدت کل میدان مغناطیس به قطب بر گردانده شده و نتیجه در شکل ۴–۲۲ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف مغناطیسی طبق

استاندارد جهانی در محل انجام برداشتها عبارت است از: Inclination=54.83, Declination=3



شکل ۴–۲۱: نقشه شدت کل میدان مغناطیس در محدوده پروفیل ۱۰ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.



شکل ۴-۲۲: نقشه برگردان به قطب مغناطیسی در محدوده پروفیل ۱۰ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.



معاونت اكتثاف -مديريت اكتثافات ماجيه اي

٤- ٧- ٢- مطالعات مقاومت ويژه

در شکل ۴–۲۳ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال تویو گرافی سطح زمین در طول پروفیل ۱۰ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۳/۸- و ۲۵۷ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل 🛠 ۲۳ ) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل نسبتا بالا است. به نحوی که بیشینه مقاومت ویژه مشاهده شده از ۷۰۰ اهم متر فراتر است. این مسئله ناشی از حضور واحدهای سنگی رسوبی در کنار نهشته های آبرفتی می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با حضور واحدهای سنگی، هوازدگی و شکستگی آنها و ضخامت نهشته های رسوبی تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف سبز تا بنفش) در فاصله ایستگاهی ۲۲۰ تا انتهای پروفیل، منطبق بر ناحیه با خواص مغناطیس نسبی بالا در نقشه بر گردان به قطب (شکل ۴–۲۲) می باشد. این ناحیه در ارتباط با واحد سنگی رسوبی تفسیر می شود که در مقایسه با نهشته های آبرفتی از خواص مغناطیس و مقاومت ویژه بالاتری برخوردار می باشد. ناپیوستگی هایی که با خط چین های سیاه رنگ در شکل ۴-۲۳ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله حدودی ۱۰ متری از همبری اصلی مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناييوستگي ديگر در اين پهنه گسلي قابل تشخيص مي باشند.







معاونت اكتثاف -مديرت اكتثافات ماجه اي

٤- ۸- پروفیلهای شماره ۱۱ و ۱۲

٤- ٨- ١- مطالعات مغناطيس سنجي

در شکل های ۳-۲ و ۳-۴ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل های ۱۱ و ۱۲ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۲-۴۲ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۶۲۳ و ۴۸۵۹۶ گاما بوده و حد زمینه در این منطقه ۴۸۶۱۰ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل مغناطیسی اندازه گیری شده برابر با ۲۷ گاما میباشد.

همانطور که در شکل ۲–۲۴ مشاهده می شود، تغییرات شدت میدان مغناطیس خیلی پایین است. این مسئله ناشی از گسترش نهشته های رسوبی و عدم رخنمون واحدهای سنگی در سطح زمین می باشد. با این حال، ساختارهای واقع در جنوب محدوده از خواص مغناطیس نسبی بالاتری (طیف رنگی قرمز رنگ) برخوردار می باشند. این مسئله احتمالا ناشی از ضخامت کمتر رسوبات بر روی واحد سنگی رسوبی در این ناحیه است. علاوه بر این، چند روند خطی در نقشه شدت کل مغناطیس (شکل ۲–۲۴) قابل تشخیص می باشد. این خطواره های مغناطیسی که ناشی از عملکره گسل های مختلف در این ناحیه به نظر می رسند، با خط چین های سفید رنگ مشخص شده اند. علاوه بر این، موقعیت ایستگاه های مقاومت ویژه در طول پروفیل های ۱۱ و ۱۲ با مثلث های سیاه رنگ در شکل به قطب بر گردانده شده و نتیجه در شکل ۴–۲۵ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف به قطب بر گردانده شده و نتیجه در شکل ۴–۲۵ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف



شکل ۴–۲۴: نقشه شدت کل میدان مغناطیس در محدوده پروفیل های ۱۱ و ۱۲ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.



شکل ۴–۲۵: نقشه برگردان به قطب مغناطیسی در محدوده پروفیل های ۱۱ و ۱۲ همراه با ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.



معاونت اكتثاف -مديرت اكتثافات ماجه اي

٤- ٨- ٢- مطالعات مقاومت ويژه

در شکل ۴-۲۶ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمين در طول يروفيل ۱۱ آورده شده است. كمينه و بيشنه مقادير مقاومت ويژه اندازه گيري شده در طول اين يروفيل به ترتیب ۰/۳۷ و ۲۲۵ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴-۲۶) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل کمتر از پروفیل قبلی است. به نحوی که بیشینه مقاومت ویژه از ۲۵۰ اهم متر فراتر است. این مسئله ناشی از گسترش نهشته های رسوبی و عدم رخنمون واحد های سنگی در این محدوده می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر در اندازه دانه های رسوبي و حضور واحد سنگي رسوبي در عمق تفسير مي شود. ناحيه يا مقاومت ويژه نسبي بالا (طيف رنگي بنفش) در ابتدای پروفیل، منطبق بر ناحیه با خواص مغناطیس نسبی بالا در نقشه بر گردان به قطب (شکل ۴–۲۲) می باشد. این ناحیه در ارتباط با واحد سنگی رسوبی تفسیر می شود که در مقایسه با نهشته های آبرفتی از خواص مغناطیس و مقاومت ویژه بالاتری برخوردار می باشد. ناپیوستگی و گسلش های احتمالی که با خط چین های سیاه رنگ در شکل ۴-۲۳ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله حدودی ۱۵ متری از همبری اصلی مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند.





شکل ۴-۲۶: مدل حاصل از وارون سازی دوبعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۱۱. موقعیت گسل ها از مطالعات تکتونیک و خطواره های مغناطیسی به ترتیب با

پیکان های قرمز و سیاه رنگٔ مشخص شده اند. ژ**نوفیزیک** ٩.



معاونت اکتشاف -مدیریت اکتشافات ماجیه ای

در شکل ۴–۲۷ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۱۲ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۳۱۹/۰- و ۱۶۶/۵ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴–۲۷ ) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل همانند پروفیل ۱۱ می باشد. به نحوی که بیشینه مقاومت ویژه از ۲۵۰ اهم متر فراتر است. این مسئله ناشی از گسترش نهشته های رسوبی و عدم رخنمون واحد های سنگی در این محدوده می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر در اندازه دانه های رسوبی و حضور واحد سنگی رسوبی در عمق تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف رنگی قرمز بنفش) در ابتدای پروفیل در ارتباط با واحد سنگی رسوبی تفسیر می شود. این واحد در مقایسه با نهشته های آبرفتي از خواص مغناطیس و مقاومت ویژه بالاتري برخوردار مي باشد. ناييوستگي هايي كه با خط چين هاي سياه رنگ در شکل ۴-۲۷ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل از مطالعات تکتونیک با پیکان های قرمز مشخص شده است. به دلیل محدودیت های موجود، داده های مغناطیس سنجی محدوده مورد بررسی، این پروفیل را پوشش نداده است. با این حال با توجه به مجاورت به پروفیل ۱۱، می توان ارتباط منطقی مابین ساختارهای زیرسطحی در دو پروفیل مشاهده کرد. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) منطبق بر گسستگی اصلی مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند.





معاونت اكتشاف -مديريت اكتشافات ماجه اي

٤- ۹- پروفیلهای شماره ۱۳ و ۱٤

٤- ٩- ١- مطالعات مغناطیس سنجی

در شکل ۱–۳ و ۳–۳ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل۱۳ آورده شد. در نمودار های ۴-۱ و ۴-۲ به ترتیب منحنی های تغییرات شدت کل میدان مغناطیسی و تغییرات ارتفاعی سطح زمین در طول پروفیل ۱۳ آورده شده است. لازم به ذکر است که از نامگذاری یکسان برای ایستگاه های مقاومت ویژه و مغناطیس سنجی استفاده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده به ترتیب ۴۸۳۴۸ و ۴۷۵۱۷ گاما بوده و حد زمینه در این منطقه ۴۸۲۵۰ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل مغناطیسی اندازه گیری شده برابر با ۸۳۷ گاما میباشد. همانطور که در شکل ۴-۱ مشاهده می شود، تغییرات شدت میدان مغناطیس نسبتا بالا است. این تغییرات نسبتا زیاد می تواند ناشی از حضور سازه های فلزی در سوله ها و ساختمان های ابتدای پروفیل باشد. به غیر از نواحی ابتدایی پروفیل، تغییرات خواص مغناطیسی در ارتباط با واحدهای مختلف زمین شناسی، شکستگی های موجود در آنها و همچنین ضخامت نهشته های آبرفتی بر روی واحدهای سنگی تفسیر می شود. تغییرات شدت مغناطیس در فاصله ایستگاهی ۱۰۰ تا ۱۷۰ متری پروفیل (براکت قرمز رنگ) منطبق با تغییر ناگهانی تو پو گرافی سطح زمین (نمودار ۴–۲) می باشد. این مسئله می تواند ناشی از حضور گسلش احتمالی در این ناحیه باشد که در بررسی داده های مقاومت ویژه مورد ارزیابی تکمیلی قرار می گیرد.









مقاومت ويژه يكسان مي باشد.

ژنوف<u>نری</u>ک



معاونت اكتشاف -مديريت اكتشافات ماحيه اي

در شکل ۱–۳ و ۳–۳ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل ۱۴ آورده شد. در نمودار های ۴–۳ و ۴–۴ به ترتیب منحنی های تغییرات شدت کل میدان مغناطیسی و تغییرات ارتفاعی سطح زمین در طول پروفیل ۱۴ آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده به ترتیب ۴۸۳۵۴ و ۴۸۰۴۱ گاما بوده و حد زمینه در این منطقه ۴۸۲۵۰ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل مغناطیسی اندازه گیری شده برابر با ۳۱۳ گاما میباشد.

همانطور که در نمودار ۴-۳ مشاهده می شود، تغییرات شدت میدان مغناطیس نسبتا بالا است. تغییرات خواص مغناطیسی در ارتباط با واحدهای مختلف زمین شناسی و شکستگی های موجود در آنها در زیر نهشته های رسوبی تفسیر می شود. تغییرات شدت مغناطیس در فاصله ایستگاهی ۲ تا ۱۰۰ متری پروفیل (براکت قرمز رنگ) منطبق با تغییر توپو گرافی سطح زمین (نمودار ۴-۴) می باشد. این مسئله می تواند ناشی از حضور گسلش احتمالی در این ناحیه باشد که در بررسی داده های مقاومت ویژه مورد ارزیابی قرار می گیرد.

GLL: 



ژئو**فیز**یک



معاونت التثاف -مديرت التثافات ماجبه اي

## ٤- ٩- ٢- مطالعات مقاومت ويژه

در شکل ۴–۲۸ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال تویو گرافی سطح زمين در طول يروفيل ١٣ آورده شده است. كمينه و بيشنه مقادير مقاومت ويژه اندازه گيري شده در طول اين يروفيل به ترتیب ۱/۱۴– و ۲۶۴/۶ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴–۲۸) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل همانند پروفیل های قبلی می باشد. به نحوی که بیشینه مقاومت ویژه از ۲۵۰ اهم متر فراتر است. این مسئله ناشی از گسترش نهشته های رسویی و عدم رخنمون واحدهای سنگی در این محدوده می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر در اندازه دانه های رسوبی و حضور واحد سنگی رسوبی در زیر نهشته های آبرفتی تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف رنگی قرمز بنفش) در عمق در ارتباط با واحد سنگی رسویی تفسیر می شود. ناپیوستگی هایی که با خط چین های سیاه رنگ در شکل ۴–۲۸ مشخص شده اند، می توانند ناشی از عملکر د سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، دو خط گسل (از مطالعات تکتونیک) با فاصله حدودی ۱۵ متری از همبری اصلی مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند. 





وزارد منعد. معدن و نجارت ساز هان زمین شناسی و اکتشافات معدنی کشور Ministry of Idustry, Mine and Trade Geological Survey of Iran

معاونت اكتشاف -مديريت اكتشافات ماحيه اي

در شکل ۴–۲۹ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمين در طول پروفيل ۱۴ آورده شده است. كمينه و بيشنه مقادير مقاومت ويژه اندازه گيري شده در طول اين پروفيل به ترتیب ۰/۳۱۵ و ۴۹۳/۶ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴-۲۹) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل مشابه پروفیل ۱۳ و اندکی بیشتر از آن می باشد. به نحوی که بیشینه مقاومت ویژه از ۳۵۰ اهم متر فراتر است. همانند پروفیل ۱۳، این مسئله ناشی از تغییر ضخامت نهشته های رسوبی و حضور واحد های سنگی در عمق می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر در اندازه دانه های رسوبی و حضور واحد سنگی رسوبی در زیر نهشته های رسوبی تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف رنگی قرمز تا بنفش) در عمق در ارتباط با واحد سنگی رسوبی تفسیر می شود. ناپیوستگی ها که با خط چین های سیاه رنگ در شکل ۴-۲۹ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل ها (از مطالعات تکتونیک) با فاصل حداقلی ۳۵ متری از همبری اصلی مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند. 







معاونت اكتثاف -مديريت اكتثافات ماجه اي

٤- ١٠- پروفیل شماره ١٥

٤- ١٠ - ١- مطالعات مغناطيس سنجى

در شکل ۳–۲ و ۳–۴ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل ۱۵ آورده شد. در نمودار های ۴–۵ و ۴–۹ به ترتیب منحنی های تغییرات شدت کل میدان مغناطیسی و تغییرات ارتفاعی سطح زمین در طول پروفیل ۱۵ آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۶۱۰ و ۴۸۴۴۸ گاما بوده و حد زمینه در این منطقه ۴۸۵۷۰ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل مغناطیسی اندازه گیری گاما در نظر می منازه گیری شده برابر با ۱۹۲

همانطور که در نمودار ۴-۵ مشاهده می شود، به غیر از فاصله ۴۰۰ تا ۵۰۰ متری پروفیل، تغییرات شدت میدان مغناطیس خیلی بالا نیست. تغییرات خواص مغناطیسی در ارتباط با واحدهای مختلف سنگ های رسوبی و شکستگی های موجود در آنها در زیر نهشته های رسوبی تفسیر می شود. تغییرات شدت مغناطیس در فاصله ایستگاهی ۳۸۰ متری تا انتهای پروفیل (براکت قرمز رنگ) منطبق با تغییر توپوگرافی سطح زمین (نمودار ۴-۶) می باشد. این مسئله می تواند ناشی از حضور گسلش احتمالی در این ناحیه باشد که در بررسی داده های مقاومت ویژه مورد ارزیابی قرار می گیرد. این پروفیل تقریبا موازی با پروفیل ۹ برداشت شد. لذا تغییرات قابل توجه شدت میدان مغناطیس در فاصله ایستگاهی ۳۸۰ متری تا انتهای پروفیل (به دلیل همبری واحدهای رسوبی ناشی از گسلش) مورد انتظار بوده است. علاوه بر این، تغییرات کوچکتری در فاصله ایستگاهی ۱۵۰ و ۲۰۰ متری پروفیل قابل تشخیص است که با پیکانهای سیاه رنگ مشخص شده اند.









معاونت اكتشاف -مديريت اكتشافات ماجه اي

٤- ١٠ - ٢- مطالعات مقاومت ويژه

در شکل ۴–۳۰ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۱۵ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۵/۲۰– و ۴۱۵/۵ اهم متر می باشد. متاسفانه به دلیل عدم موافقت مالکین زمین در طول این پروفیل، امکان اندازه گیری کامل پروفیل میسر نشد. لذا بی هنجاری مشاهده شده در نمودار داده های شدت کل میدان مغناطیس و در فاصله ایستگاهی ۳۸۰ متری تا انتهای پروفیل، توسط داده های مقاومت ویژه پوشش نیافته است. هر چند با توجه به داده های پروفیل ۹، انتظار می رود حضور گسل در فاصله ایستگاهی مذکور توسط داده های مقاومت ویژه تایید شود.

همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۲–۳۰) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل اندکی بیشتر از برخی از پروفیل های قبلی است. به نحوی که بیشینه مقاومت ویژه از ۵۰۰ اهم متر فراتر است. این مسئله ناشی از حضور واحدهای سنگی رسوبی (با هوازدگی کمتر) در زیر نهشته های رسوبی است. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر در اندازه دانه های رسوبی در نزدیک سطح و حضور واحد سنگی رسوبی در زیر نهشته های رسوبی تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف رنگی قرمز تا بنفش) در عمق در ارتباط با واحد سنگی رسوبی تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف رنگی قرمز تا بنفش) در عمق در ارتباط با واحد سنگی رسوبی تفسیر می شود. ناحیه با مقاومت ویژه نسبی ویزه مشخص شده انه گست که می معناطیس سنجی با پیکان های سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند.





شکل ۴-۳۰: مدل حاصل از وارون سازی دوبعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۱۵. موقعیت گسل ها از مطالعات تکتونیک و خطواره های مغناطیسی به ترتیب با

پیکان های قرمز و سیاه رنگٔ مشخص شده اند. ژ نوفیزیک 1.4



معاونت التثاف -مديرت التثافات ماجبه اي

## ٤- ١١- مطالعات مقاومت ويژه پروفيل ١٦

پروفیل ۱۶ در یکی از بلوارهای شهر و در محدوده شهری واقع شده است. به دلیل حضور سازه های فلزی در محدوده برداشت، امکان اندازه گیری داده های مغناطیس سنجی در طول این پروفیل میسر نبود. از این رو در محدوده بلوار داده های مقاومت ویژه برداشت شد و در شکل ۴–۳۱ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپوگرافی سطح زمین در طول پروفیل ۱۶ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۰ و ۶۵/۳ اهم متر میباشد. گستره تغییرات مقاومت ویژه در طول این پروفیل عمدتا کمتر از پروفیل های قبلی است. به نحوی که بیشینه مقاومت ویژه از ۱۰۰ اهم متر فراتر نیست. این مسئله ناشی از گسترش نهشته های رسوبی و ضخامت قابل توجه آنها در این محدوده می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل در ارتباط با تغییر در اندازه دانه های رسوبی، رطوبت آنها و حضور گسستگی های احتمالی در رسوبات تفسیر می شود. ناپیوستگی هایی که با خط چین های سیاه رنگ در شکل ۴–۳۱ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک با پیکان قرمز رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با دقت خوبی منطبق بر همبری اصلی مقاومت ویژه می باشد. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه کسلی قابل تشخیص می باشند.







معاونت اکتشاف -مدیریت اکتشافات ماجیه ای

٤- ١٢- پروفیل شماره ۱۷

٤- ١٢- ١- مطالعات مغناطيس سنجى

در شکل های ۳–۲ و ۳–۴ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل ۱۷ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴–۳۲ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۵۸۵ و ۴۸۴۰۱ گاما بوده و حد زمینه در این منطقه ۴۸۵۱۲ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار شدت میدان کل مغناطیسی شده برابر با ۱۸۴ گاما میباشد.

همانطور که در شکل ۴–۳۲ مشاهده می شود، تغییرات شدت میدان مغناطیس خیلی بالا نیست. این مسئله ناشی از گسترش نهشته های رسوبی بر روی واحد های رسوبی هوازده می باشد. به نظر می رسد که گسلش و خرد شدگی، سبب کاهش خواص مغناطیس (طیف رنگی آبی تا سبز) واحد رسوبی در قسمت هایی از محدوده بوده است. با این حال، ساختارهای واقع در نیمه شمالی محدوده از خواص مغناطیس نسبی بالاتری (طیف رنگی قرمز رنگ) برخوردار می باشند. چند روند خطی در نقشه شدت کل مغناطیس (شکل ۴–۳۲) قابل تشخیص می باشد. این خطواره های مغناطیسی که احتمالا ناشی از عملکرد گسل های مختلف در این ناحیه اند، با خط چین های سفید رنگ در نقشه شدت کل میدان مغناطیس مشخص شده اند. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل ۱۷ با مثلث های سیاه رنگ در شکل ۴–۳۲ به نمایش در آمده است.





معاونت اكتثاف -مديريت اكتثافات ناحيه اي

به منظور تعیین محل دقیق تر ساختارهای زیرسطحی، نقشه شدت کل میدان مغناطیس به قطب بر گردانده

شده و نتیجه در شکل ۴–۳۳ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف مغناطیسی طبق

استاندارد جهانی در محل انجام برداشتها عبارت است از:

Inclination=55.26, Declination=3.52

in it








شکل ۴–۳۲: نقشه شدت کل میدان مغناطیس در محدوده پروفیل ۱۷ همراه با پربندهای توپو گرافی (خطوط سیاه رنگ)، ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژ نوفیزیک







شکل ۴–۳۳: نقشه برگردان به قطب مغناطیسی در محدوده پروفیل ۱۷ همراه با پربندهای توپوگرافی (خطوط سیاه رنگ)، ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.

ژنوفن<u>ر</u>یک



معاونت اكتثاف -مديرت اكتثافات ماجه اي

## ٤- ١٢ - ٢ مطالعات مقاومت ويژه

در شکل ۴–۳۴ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال تویو گرافی سطح زمین در طول پروفیل ۱۷ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل 🌒 به ترتیب ۱/۵– و ۴۹۴ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴–۳۴) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل اندکی بیشتر از پروفیل ۱۶ می باشد. به نحوی که بیشینه مقاومت ویژه از ۳۵۰ اهم متر فراتر است. این مسئله ناشی از گسترش نهشته های رسوبی خشک در سطح زمین و نزدیک تر به سطح بودن واحد های سنگی هوازده در عمق می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر در اندازه دانه های رسوبی، میزان رطوبت آنها و حضور واحد سنگی رسوبی در زیر نهشته های رسوبی تفسیر می شود. از این رو، تغییرات مقاومت ویژه از سطح به عمق به ترتیب در ارتباط با نهشته های رسوبی خشک، نهشته های مرطوب و حاوی آپ و سنگ کف رسوبی تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف رنگی قرمز تا بنفش) در عمق در ارتباط با واحد سنگی رسوبی هوازده تفسیر می شود. ناپیوستگی هایی که با خط چین های سیاه رنگ در شکل ۴-۳۴ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتيب با پيكان هاي قرمز و سياه رنگ در مدل وارون مقاومت ويژه مشخص شده اند. همانطور كه مشاهده مي شود، خط گسل (از مطالعات تکتونیک) با فاصله کمی از ناپیوستگی ها در مدل مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند.





معاونت النشاف -مديريت النشافات ماجه اي

٤- ١٣- پروفیلهای شماره ۱۸ و ۱۹

٤- ١٣- ١- مطالعات مغناطيس سنجي

در شکل های ۳-۲ و ۳-۴ موقعیت مکانی ایستگاههای برداشت مغناطیس سنجی و مقاومت ویژه پروفیل های ۱۸ و ۱۹ آورده شد. پس از اعمال تصحیحات مورد نیاز و پردازش های اولیه داده های مغناطیس سنجی، در شکل ۴-۳۵ نقشه شدت کل میدان مغناطیسی محدوده آورده شده است. بیشترین و کمترین مقدار شدت کل میدان مغناطیسی اندازه گیری شده (بعد از حذف داده های خارج از رنج) به ترتیب ۴۸۶۹۷ و ۴۸۵۲۳ گاما بوده و حد زمینه در این منطقه ۴۸۶۵۰ گاما در نظر گرفته شد. اختلاف بیشترین و کمترین مقدار کل مغناطیسی اندازه گیری شده برابر با ۱۷۴ گاما میباشد.

همانطور که در شکل ۴–۳۵ مشاهده می شود، تغییرات شدت میدان مغناطیس مشابه محدوده قبلی است. این مسئله ناشی از گسترش نهشته های رسوبی بر روی واحد های رسوبی هوازده می باشد. ساختارهای واقع در نیمه غربی محدوده از خواص مغناطیس نسبی بالاتری (طیف رنگی قرمز رنگ) برخوردار می باشند. به دلیل محدودیت های مکانی، امکان برداشت در نواحی شرقی محدوده میسر نشد. با این حال، به نظر می رسد که یک همبری با امتداد تقریبی شمالی جنوبی وجود دارد که با خط چین سفید رنگ در امتداد مزبور مشخص شده است. علاوه بر این، چند روند خطی در نقشه شدت کل مغناطیس (شکل ۴–۳۵) قابل تشخیص می باشد. این خطواره های مغناطیسی که احتمالا ناشی از عملکرد گسل های مختلف در این ناحیه اند، با خط چین های سفید رنگ در نقشه شدت کل میدان مغناطیس مشخص شده اند. موقعیت ایستگاه های مقاومت ویژه در طول پروفیل های ۱۸ و ایا منثل های سیاه رنگ در شکل ۴–۳۵ به نمایش در آمده است.





معاونت اكتثاف -مديريت اكتثافات ناحيه اي

به منظور تعیین محل دقیق تر ساختارهای زیرسطحی، نقشه شدت کل میدان مغناطیس به قطب بر گردانده

شده و نتیجه در شکل ۴–۳۶ به نمایش در آمده است. مقادیر زاویه میل مغناطیسی و زاویه انحراف مغناطیسی طبق

استاندارد جهانی در محل انجام برداشتها عبارت است از:

Inclination=55.31, Declination=3.55 ecis in its 





شکل ۴–۳۵: نقشه شدت کل میدان مغناطیس در محدوده پروفیل های ۱۸ و ۱۹ همراه با پربندهای توپوگرافی (خطوط سیاه رنگ)، ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به ترتیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.



شکل ۴–۳۶: نقشه برگردان به قطب مغناطیسی در محدوده پروفیل های ۱۸ و ۱۹ همراه با پربندهای توپوگرافی (خطوط سیاه رنگ)، ایستگاه های مقاومت ویژه (مثلث های سیاه رنگ) و مغناطیس سنجی (نقاط سیاه رنگ). خطوط قرمز و خط چین های سفید رنگ به تر تیب گسل ها (از مطالعات تکتونیک) و خطواره های مغناطیسی می باشند.



معاونت اكتثاف -مديرت اكتثافات ماجه اي

٤- ١٣ - ٢ - مطالعات مقاومت ويژه

در شکل ۴–۳۹ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۱۸ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۱۱۶- و ۴۸۲/۷ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴–۳۹) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل اندکی بیشتر از پروفیل ۱۷ میباشد. به نحوی که بیشینه مقاومت ویژه از ۵۰۰ اهم متر فراتر است. این مسئله ناشی از حضور واحد سنگی رسوبی در مرکز پروفیل و در عمق کم در زیر نهشته های رسوبی می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر در اندازه دانه های رسوبی و نزدیک سطح بودن واحد سنگی در زیر نهشته های رسوبی تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف رنگی قرمز تا بنفش) در عمق در ارتباط با واحد سنگی رسوبی تفسیر می شود. ناپیوستگی هایی که با خط چین های سیاه رنگ در شکل ۴–۳۹ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) تقریبا منطبق با همبری اصلی مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص





معاونت اكتثاف -مديريت اكتثافات ماجيه اي

در شکل ۴-۴۰ مدل حاصل از وارون سازی دو بعدی داده های مقاومت ویژه با اعمال توپو گرافی سطح زمین در طول پروفیل ۱۹ آورده شده است. کمینه و بیشنه مقادیر مقاومت ویژه اندازه گیری شده در طول این پروفیل به ترتیب ۰/۴۹– و ۳۸۷/۶ اهم متر میباشد. همانطور که از داده های اندازه گیری شده و مدل وارون (شکل ۴–۴۰ ) مشاهده می شود، گستره تغییرات مقاومت ویژه در طول این پروفیل اندکی کمتر از پروفیل ۱۸ می باشد. به نحوی که بیشینه مقاومت ویژه از ۳۵۰ اهم متر فراتر نیست. این مسئله ناشی از ضخامت بیشتر نهشته های آبرفتی بر روی واحد سنگی رسوبی می باشد. لذا تغییرات مقاومت ویژه در طول پروفیل نیز در ارتباط با تغییر در اندازه دانه های رسوبی و حضور واحد سنگی در زیر نهشته های رسوبی تفسیر می شود. ناحیه با مقاومت ویژه نسبی بالا (طیف رنگی قرمز تا بنفش) در عمق در ارتباط با واحد سنگی رسوبی تفسیر می شود. ناپیوستگی هایب که با خط چین های سیاه رنگ در شکل ۴-۴۰ مشخص شده اند، می توانند ناشی از عملکرد سامانه گسلی در این ناحیه باشند. موقعیت گسل ها از مطالعات تکتونیک و خطواره های حاصل از نقشه های مغناطیس سنجی به ترتیب با پیکان های قرمز و سیاه رنگ در مدل وارون مقاومت ویژه مشخص شده اند. همانطور که مشاهده می شود، خط گسل (از مطالعات تکتونیک) با فاصله اندکی از همبری های اصلی مقاومت ویژه مشاهده می شود. علاوه بر گسل مزبور چند ناپیوستگی دیگر در این پهنه گسلی قابل تشخیص می باشند.







معاونت اكتثاف -مديرت اكتثافات ماجه اي

فصل پنجم

نتیجه گیری و پیشنهادات

مطالعات ژئوفیزیک به منظور تدقیق گسل های شناخته شده و همچنین آشکارسازی گسل های مدفون شهر تبریز و حومه آن در استان آذربایجان شرقی صورت گرفت. بدین منظور ۱۹ پروفیل جهت مطالعات مقاومت ویژه الکتریکی با مشورت کارشناس تکتونیک و در نظر گرفتن نتایج حاصل از مطالعات تکتونیک (عکس های هوایی، بازديدهاي ميداني و ...)، در محدوده فوق طراحي گرديد. علاوه بر اين، براي بررسي هاي دقيق تر و ارزيابي پاسخ گسل ها و همچنین ناپیوستگی های مشاهده شده در روش مقاومت ویژه، ابتدا مطالعات مغناطیس سنجی در هر یک از محدوده های مورد بررسی نیز صورت پذیرفت. تنها به دلیل محدودیت های موجود و حضور سازه های فلزی در مجاورت پروفیل ۱۶، امکان اندازه گیری داده های مغناطیس سنجی بر روی پروفیل مزبور میسر نشد. نتايج حاصل از مطالعات مغناطيس سنجى نشان دهنده تغييرات نسبتا پايين شدت ميدان مغناطيس در عمده محدوده های مورد بررسی است. از آنجا که در گستره مورد مطالعه نهشته های رسوبی یا خاک های ناشی از فرسایش واحدهای رسوبی قرار داشته اند، چنین مسئله ای مورد انتظار بوده است. به نظر می رسد تغییرات نسبتا شدیدتر میدان مغناطیس (بیشتر از ۲۰۰ گاما) در نقشه ها، عمدتا در ارتباط با حضور کانه های مغناطیسی (نظیر هماتیت) همراه با واحدهای رسوبی محدوده است. از آنجا که عمده واحدهای رسوبی رخنمون یافته در اطراف محدوده مورد مطالعه، واحدهای رسوبی قرمز رنگ (نظیر مارن ها، ماسه سنگ ها و کنگلومرا و ...) بوده اند، تغییرات شدت مغناطیس مشاهده شده را می توان به حضور آنها نسبت داد. واحدهای رسوبی مذکور بواسطه حضور کانه های هماتیت می توانند حاوی مغناطیس بازماند قابل توجهی باشند. در برخی نواحی (نظیر پروفیل های ۳، ۴ و ۹) تغییرات قابل توجه میدان مغناطیس در ارتباط با همبری واحدهای رسوبی تفسیر شده و ناشی از



معاونت اكتشاف -مديريت اكتشافات ماحيه اي

عملکرد گسل در نواحی مزبور به نظر می رسند. متاسفانه به دلیل پوشش خاک (ناشی از فرسایش واحد های سنگی) و ضخامت قابل توجه نهشته های آبرفتی، امکان اندازه گیری های خودپذیری مغناطیسی برای تفکیک واحدهای رسوبی نبوده است. با این حال، با اندازه گیری خودپذیری و همچنین بازماند مغناطیس واحدهای رسوبی مختلف، منشا خواص مغناطیس واحدهای سنگی در نواحی مورد بررسی قابل تشخیص است. خوشبختانه چنین امکانی در آزمایشگاه پالئومغناطیس سازمان زمین شناسی مهیا می باشد.

در نقشه های حاصل از مطالعات مغناطیس سنجی، خطواره های مغناطیسی مشاهده می شوند که حضور ناپیوستگی های زیرسطحی را در محدوده های مورد بررسی تایید می کنند. خطواره های مغناطیسی عمدتا گسل های موجود (ترسیم شده توسط کارشناسان تکتونیک) را تایید کرده و یا با فواصل اندکی از آنها مشاهده میشوند. در برخی نقاط علاوه بر گسل های شناخته شده، خطواره های دیگری نیز مشاهده می شود. این مسئله می تواند ناشی از حضور سامانه (یا پهنه گسلی) در محدوده های مورد بررسی باشد.

برای بررسی های دقیق تر، مطالعات مقاومت ویژه در محدوده مورد مطالعه صورت پذیرفت. سعی شده تا پروفیل های مقاومت ویژه طوری طراحی شوند که علاوه بر گسل های شناخته شده (از مطالعات تکتونیک)، خطواره های مغناطیسی را نیز در برگیرد. نتایج حاصل از مطالعات مقاومت ویژه نشان دهنده تغییرات نسبتا پایین مقاومت ویژه در نواحی مورد مطالعه بوده است. این مسئله ناشی از گسترش عمقی نهشته های آبرفتی (با مقاومت ویژه نسبتا پایین) همراه با فرسایش قابل توجه واحدهای سنگی رسوبی در اعماق مورد مطالعه است. با این حال، در برخی نواحی به دلیل رخنمون واحدهای سنگی و یا ضخامت کم خاک و نهشته های رسوبی رسوبی، همبری های شاخص مقاومت ویژه مشاهده شد. گسل های معرفی شده در برخی نواحی (نظیر پروفیل های ۱۰ و ۱۶ تا ۱۹) تقریبا منطبق بر همبری های مقاومت ویژه می باشند ولی در برخی نواحی (نظیر پروفیل های ۱۰ و ۱۶ تا ۱۹) حدود ۵۰ متر مابین آنها مشاهده می شود. با توجه به شواهد از مطالعات ژنوفیزیک می توان مسیر گسل ها را در





معاونت اكتشاف -مديريت اكتشافات ماحيه اي

نقشه ها اصلاح نمود. لازم به ذکر است که علاوه بر گسل های موجود، ناپیوستگی های دیگری نیز در مدل های حاصل از وارون سازی داده های مقاومت ویژه مشاهده شد. هر چند که به دلیل نوع وارون سازی به کار رفته و مقاومت ویژه پایین نهشته های آبرفتی، تشخیص ناپیوستگی در مدلهای مقاومت ویژه دشوار است. با این حال، با توجه به پوشش داده مناسب و همچنین همبستگی برخی از ناپیوستگی های مقاومت ویژه با خطواره های مغناطیس، مي توان آنها را با فعالیت هاي تکتونيک مرتبط دانست. لذا پيشنهاد مي شود، ناپيوستگي هاي موجود در مدل هاي مقاومت ویژه (خط چین های سیاه رنگ بر روی مدل ها) که توسط خطواره های مغناطیس تایید می شوند، در بازدیدهای مجدد و در صورت نیاز حفر ترانشه کنترل شوند. 5 





معاونت اكتثاف -مديريت اكتثافات ناحيه اي

سیاسگزاری

از مهندس جعفري (رئيس گروه ژئوفيزيک) براي مشاوره در اجراي يروژه و همچنين دکتر نظري (معاون

پژوهشکده علوم زمین) برای داوری گزارش حاضر و ارائه نقطه نظراتشان قدردانی می شود. سپاسگزار همکاری صمیمانه پرسنل مرکز تبریز به ویژه دکتر اسماعیلی (زمین شناس تکتونیک مرکز تبریز)، مهندس چایچی زاده

(کارشناس ژئوفیزیک مرکز تبریز) و مهندس سرتیپی (ریاست مرکز تبریز) می باشیم. در انجام این مطالعه، مهندس

عباس باقری و مرتضی صادقیانی به عنوان کارشناس و تکنسین با گروه همکاری داشته اند که از ایشان صمیمانه 

سپاسگزاري مي شود.

## پيوست الف

Station	Х	Y	Z
P1 0	622926	4213064	1606
P1 10	622924	4213073	1603
P1 20	622919	4213087	1602
P1 30	622917	4213098	1599
P1 40	622914	4213108	1599
P1 50	622913	4213119	1595
P1 60	622912	4213128	1594
P1 70	622909	4213138	1596
P1 80	622909	4213147	1597
P1 90	622905	4213162	1597
P1 100	622904	4213171	1601
P1 110	622901	4213181	1601
P1 120	622899	4213191	1605
P1 130	622897	4213201	1607
P1 140	622895	4213210	1608
P1 150	622894	4213220	1608
P1 160	622892	4213229	1605
P1 170	622890	4213240	1602
P1 180	622887	4213249	1598

مختصات UTM-WGS84	ر سیستم	ويژه د	مقاومت	های	ایستگاه	موقعيت
------------------	---------	--------	--------	-----	---------	--------

P1 190	622886	4213259	1594
P1 200	622885	4213268	1593
P1 210	622883	4213278	1590
P2 5	622528	4213501	1549
P2 15	622535	4213508	1552
P2 25	622542	4213513	1551
P2 35	622550	4213521	1551
P2 45	622559	4213528	1551
P2 55	622566	4213533	1551
P2 65	622574	4213540	1550
P2 75	622580	4213547	1543
P2 85	622586	4213555	1543
P2 95	622596	4213559	1543
P2 105	622605	4213566	1545
P2 115	622613	4213572	1546
P2 125	622621	4213579	1546
P2 135	622628	4213585	1545
P2 145	622636	4213591	1546
P2 155	622643	4213598	1546
P2 165	622650	4213604	1549

زارت منتد، مدن و تجارت سازمان زمین شناسی و کتشافات معدنی کشور Ministry of Industry, Mine and Trade Geological Survey of Iran



وزارت

معاونت النثياف -مديريت النثنافات ناحيه اي

	P4 130	622751	4212223	1656	
	P4 140	622760	4212228	1656	
	P4 150	622768	4212233	1657	
	P4 160	622776	4212237	1658	
	P4 170	622785	4212243	1659	
	P4 180	622794	4212248	1658	
	P4 190	622803	4212253	1659	
	P4 200	622811	4212260	1660	
S	P4 210	622819	4212263	1660	
	P4 220	622829	4212268	1661	
	P4 230	622836	4212274	1661	
	P5 0	623625	4211740	1673	
	P5 10	623624	4211751	1673	
	P5 20	623623	4211761	1672	
	P5 30	623623	4211771	1673	
	P5 40	623623	4211780	1675	
	P5 50	623624	4211792	1675	
	P5 60	623623	4211801	1675	
	P5 70	623624	4211812	1677	
	P5 80	623623	4211821	1675	
	P5 90	623622	4211829	1676	
	P5 100	623622	4211840	1675	
	P5 110	623621	4211850	1677	
	P5 120	623622	4211859	1677	
	P5 130	623622	4211869	1677	9
	P5 140	623622	4211880	1677	
	P5 150	623622	4211890	1678	
	P5 160	623622	4211900	1678	
	P5 170	623622	4211910	1678	
	P5 180	623622	4211920	1679	
	P5 190	623621	4211930	1681	
	P6 0	618375	4216524	1664	
	P6 50	618404	4216565	1665	
	P6 100	618434	4216607	1665	
	P6 150	618463	4216648	1666	
	P6 200	618492	4216689	1666	
	P6 250	618521	4216730	1667	
	P6 300	618551	4216772	1668	
	P6 350	618580	4216813	1668	
	P6 380	618596	4216836	1669	
	P6 460	618642	4216901	1670	
	P7 0	619134	4214638	1470	
	P7 10	619135	4214651	1471	
	P7 20	619135	4214660	1469	

P2 175	622658	4213610	1550	
P2 185	622666	4213617	1552	
P2 195	622674	4213624	1553	
P2 205	622681	4213630	1555	
P2 215	622689	4213636	1556	
P2 225	622697	4213642	1556	
P2 235	622704	4213648	1557	
P3 0	622738	4212109	1635	
P3 10	622737	4212120	1636	
P3 20	622739	4212130	1637	
P3 30	622740	4212138	1640	
P3 40	622742	4212149	1641	
P3 50	622744	4212157	1643	
P3 60	622745	4212168	1644	
P3 70	622748	4212177	1646	
P3 80	622750	4212186	1647	
P3 90	622752	4212196	1649	
P3 100	622752	4212206	1650	
P3 110	622754	4212215	1650	
P3 120	622756	4212225	1651	
P3 130	622758	4212233	1652	
P3 140	622760	4212244	1653	
P3 150	622762	4212254	1653	
P3 155	622764	4212260	1653	
P3 170	622766	4212275	1653	
P3 180	622767	4212285	1652	
P3 190	622768	4212293	1654	
P3 200	622772	4212302	1655	
P3 210	622773	4212318	1655	
P3 220	622775	4212326	1655	
P3 230	622776	4212338	1655	
P4 0	622640	4212157	1640	
P4 10	622648	4212162	1642	
P4 20	622656	4212166	1643	
P4 30	622664	4212172	1644	
P4 40	622673	4212177	1646	
P4 50	622682	4212181	1647	
P4 60	622692	4212188	1648	*
P4 70	622701	4212193	1649	7
P4 80	622709	4212198	1650	
P4 90	622716	4212202	1651	
P4 100	622725	4212208	1654	
P4 110	622733	4212213	1654	
P4 120	622741	4212217	1656	

ژنوف<u>یز</u>یک

يت، معدن و تجار زارد منتد، میں و بجری سازمان زمین شناسی و اکتشافات معدنی کشور

وزارت



Ministry of Industry, Mine and Trade Geological Survey of Iran

معاونت التثاف -مديريت التثافات ماحيه ای

	P9 -240	612125	4221343	1371	
	P9 -230	612130	4221351	1372	
	P9 -220	612136	4221360	1372	
	P9 -210	612142	4221367	1372	
	P9 -200	612148	4221376	1372	
	P9 -190	612153	4221385	1373	
	P9 -180	612160	4221392	1372	
$\bigcirc$	P9 -170	612165	4221402	1371	
<u> </u>	P9 -160	612170	4221409	1371	
	P9 -150	612176	4221418	1372	
	P9 -140	612182	4221426	1372	
	P9 -130	612187	4221433	1374	
	P9 -120	612193	4221442	1375	
	P9 -110	612200	4221450	1376	
	P9 -100	612203	4221457	1378	
	P9 -90	612210	4221467	1379	
	P9 -80	612216	4221476	1379	
	P9 -70	612221	4221484	1378	
	P9 -60	612227	4221491	1378	
	P9 -50	612231	4221499	1377	
	P9 -40	612235	4221507	1377	
	P9 -30	612239	4221515	1377	1
	P9 -20	612243	4221523	1377	
	P9 -10	612254	4221533	1377	
	P9 0	612261	4221540	1377	
	P10 0	623136	4214565	1716	(
	P10 10	623141	4214575	1715	
	P10 20	623145	4214585	1713	
	P10 30	623148	4214594	1713	
	P10 40	623152	4214602	1713	
	P10 50	623153	4214613	1710	
	P10 60	623157	4214623	1711	
	P10 70	623161	4214631	1711	
	P10 80	623164	4214641	1710	
	P10 90	623167	4214650	1711	
	P10 100	623170	4214660	1711	
	P10 110	623174	4214669	1711	
	P10 120	623176	4214679	1710	
	P10 130	623179	4214687	1710	
	P10 140	623183	4214697	1710	
	P10 150	623186	4214707	1710	
	P10 160	623189	4214716	1710	
	P10 170	623194	4214726	1710	
	P10 180	623196	4214734	1712	

P7 30	619135	4214668	1470	
P7 40	619137	4214680	1470	
P7 50	619136	4214691	1470	
P7 60	619136	4214701	1470	
P7 70	619136	4214709	1471	
P7 80	619136	4214719	1471	
P7 90	619135	4214729	1472	
P7 100	619136	4214740	1474	
P7 110	619136	4214750	1475	
P7 120	619135	4214761	1475	
P7 130	619135	4214770	1476	
P7 140	619135	4214780	1476	
P7 150	619135	4214791	1478	
P7 160	619136	4214800	1479	
P7 170	619135	4214811	1478	
P7 180	619135	4214820	1479	
P7 190	619136	4214830	1479	
P8 0	619090	4214511	1474	
P8 10	619091	4214520	1474	
P8 20	619091	4214530	1473	
P8 30	619090	4214540	1472	
P8 40	619091	4214550	1472	
P8 50	619091	4214560	1471	
P8 60	619090	4214570	1470	
P8 70	619090	4214581	1470	
P8 80	619089	4214591	1469	
P8 90	619090	4214600	1469	
P8 100	619090	4214611	1468	
P8 110	619090	4214620	1467	
P9 -390	612041	4221220	1367	
P9 -380	612047	4221227	1367	
P9 -370	612052	4221235	1367	
P9 -360	612057	4221244	1367	
P9 -350	612063	4221253	1368	
P9 -340	612069	4221261	1369	
P9 -330	612074	4221268	1369	
P9 -320	612080	4221277	1370	
P9 -310	612086	4221286	1372	1
P9 -300	612091	4221294	1371	7
P9 -290	612097	4221302	1371	X
P9 -280	612103	4221311	1371	
P9 -270	612107	4221318	1372	
P9 -260	612114	4221327	1371	
P9 -250	612117	4221335	1372	

ژ**ئوفیزیک** 

زارت منتد، مدن و تجارت سازمان زمین شناسی و کتشافات معدنی کشور Ministry of Industry, Mine and Trade Geological Survey of Iran

وزارت

معاونت النثياف -مديريت النثنافات ناحيه اي

	P11 230	609060	4223901	1404	
	P12 0	609095	4223627	1402	
	P12 10	609101	4223637	1402	
	P12 20	609105	4223645	1402	
	P12 30	609108	4223653	1403	
	P12 40	609115	4223662	1403	
	P12 50	609120	4223670	1403	
	P12 60	609124	4223680	1403	
S	P12 70	609128	4223689	1403	
	P12 80	609135	4223697	1404	
	P12 90	609140	4223707	1404	
	P12 100	609143	4223716	1404	
	P12 110	609149	4223722	1405	
	P12 120	609154	4223732	1404	
	P12 130	609159	4223740	1405	
	P12 140	609166	4223747	1405	
	P12 150	609174	4223756	1406	
	P12 160	609179	4223763	1406	
	P12 170	609185	4223771	1406	
	P12 180	609193	4223778	1406	
	P12 190	609198	4223787	1406	
	P12 200	609204	4223794	1406	
	P12 210	609210	4223803	1407	
	P12 220	609216	4223809	1408	
	P12 230	609224	4223817	1408	9
	P13 0	626543	4210195	1649	
	P13 10	626543	4210208	1649	
	P13 20	626544	4210218	1648	
	P13 30	626544	4210227	1649	
	P13 40	626545	4210236	1649	
	P13 50	626545	4210247	1649	
	P13 60	626546	4210256	1650	
	P13 70	626546	4210267	1652	
	P13 80	626547	4210277	1652	
	P13 90	626548	4210286	1652	
	P13 100	626550	4210296	1653	
	P13 110	626549	4210305	1653	
	P13 120	626551	4210316	1654	
	P13 130	626551	4210325	1654	
	P13 140	626553	4210336	1655	
	P13 150	626555	4210345	1656	
	P13 160	626556	4210354	1660	
	P13 170	626555	4210364	1660	
	P13 180	626557	4210374	1659	

	P10 190	623199	4214745	1712	
	P10 200	623203	4214754	1713	
	P10 210	623206	4214763	1713	
	P10 220	623210	4214772	1714	
	P10 230	623213	4214782	1714	
	P10 240	623216	4214790	1716	
	P10 250	623221	4214801	1720	
	P10 260	623223	4214810	1721	
	P10 270	623226	4214821	1722	
	P10 280	623229	4214830	1721	
	P10 290	623233	4214839	1721	
	P10 300	623238	4214848	1722	
	P10 310	623241	4214857	1722	
	P10 320	623244	4214867	1721	
	P10 330	623246	4214876	1722	
	P10 340	623252	4214885	1721	
	P10 350	623255	4214894	1720	
	P10 360	623259	4214904	1719	
	P10 370	623262	4214913	1716	
	P10 380	623265	4214922	1716	
	P10 390	623272	4214931	1717	
	P11 0	608940	4223709	1399	
	P11 10	608944	4223715	1399	
	P11 20	608950	4223723	1399	
y	P11 30	608956	4223731	1399	
	P11 40	608961	4223740	1400	
	P11 50	608967	4223748	1400	
	P11 60	608973	4223756	1400	
	P11 70	608978	4223765	1400	
	P11 80	608984	4223772	1400	
	P11 90	608989	4223780	1400	
	P11 100	608995	4223790	1401	
	P11 110	609000	4223799	1401	
	P11 120	609007	4223806	1402	
	P11 130	609012	4223816	1402	
	P11 140	609017	4223824	1402	
	P11 150	609021	4223832	1402	
	P11 160	609026	4223841	1403	31
	P11 170	609032	4223849	1403	7
	P11 180	609035	4223859	1402	Υ.,
	P11 190	609041	4223867	1403	V
	P11 200	609046	4223877	1404	
	P11 210	609050	4223885	1403	
	P11 220	609056	4223893	1404	

ژنوف<u>نر</u>يک

وزارت



زارت منتد، مدن و تجارت سازمان زمین شناسی و کتشافات معدنی کشور Ministry of Industry, Mine and Trade Geological Survey of Iran

معاونت النشاف -مديريت النشافات ماحيه اي

-					
	P15 190	612295	4221121	1369	
	P15 200	612301	4221129	1369	
	P15 210	612307	4221137	1370	
	P15 220	612314	4221145	1370	
	P15 230	612320	4221152	1370	
	P15 240	612326	4221160	1370	
	P15 250	612333	4221169	1370	
	P15 260	612340	4221176	1371	
S	P15 270	612345	4221183	1371	
	P15 280	612351	4221191	1371	
	P15 290	612358	4221198	1372	
	P15 300	612364	4221206	1373	
	P15 310	612371	4221214	1373	
	P15 320	612377	4221221	1374	
	P15 330	612383	4221230	1374	
	P15 340	612390	4221238	1375	
	P15 350	612396	4221244	1375	
	P15 360	612402	4221253	1376	
	P15 370	612409	4221260	1377	
	P15 380	612415	4221268	1378	
	P15 390	612421	4221276	1379	
	P15 400	612428	4221283	1380	
	P15 410	612435	4221290	1381	
	P15 420	612440	4221300	1382	
	P15 430	612448	4221306	1380	9
	P15 440	612453	4221314	1378	
	P15 450	612459	4221322	1376	
	P15 460	612466	4221330	1375	
	P15 470	612472	4221337	1376	
	P15 480	612478	4221346	1376	
	P15 490	612484	4221353	1376	
	P15 500	612491	4221360	1376	
	P15 510	612498	4221368	1378	
	P15 520	612503	4221377	1378	
	P15 530	612509	4221385	1376	
	P15 540	612517	4221391	1376	
	P15 550	612523	4221399	1377	
	P15 560	612530	4221407	1377	
	P15 570	612535	4221415	1378	
	P16 0	612310	4220060	1357	
	P16 200	612407	4220231	1357	
	P16 395	612521	4220393	1360	
	P17 0	600090	4227132	1362	
	P17 10	600094	4227140	1362	

	P13 190	626557	4210385	1660	
	P13 200	626557	4210395	1661	
	P13 210	626558	4210405	1661	
	P13 220	626559	4210414	1661	
	P13 230	626561	4210424	1663	
	P14 0	626342	4210326	1644	
	P14 10	626347	4210336	1644	
	P14 20	626352	4210345	1646	
	P14 30	626357	4210353	1647	
	P14 40	626362	4210361	1647	
	P14 50	626366	4210370	1648	
	P14 60	626370	4210379	1650	
	P14 70	626376	4210387	1651	
	P14 80	626380	4210396	1652	
	P14 90	626386	4210406	1653	
	P14 100	626391	4210415	1654	
	P14 110	626395	4210424	1655	
	P14 120	626400	4210433	1656	
	P14 130	626405	4210440	1658	
	P14 140	626409	4210449	1658	
	P14 150	626415	4210460	1659	
	P14 160	626420	4210468	1660	
	P14 170	626425	4210476	1661	
0	P14 180	626431	4210483	1663	
	P14 190	626435	4210493	1664	
	P15 0	612174	4220975	1365	
	P15 10	612181	4220982	1366	
	P15 20	612187	4220990	1366	
	P15 30	612194	4220998	1367	
	P15 40	612201	4221006	1367	
	P15 50	612205	4221013	1367	
	P15 60	612212	4221020	1367	
	P15 70	612219	4221029	1368	
	P15 80	612224	4221036	1368	
	P15 90	612231	4221043	1368	
	P15 100	612239	4221052	1368	
	P15 110	612245	4221060	1368	
	P15 120	612250	4221068	1368	1
	P15 130	612257	4221075	1369	6.
	P15 140	612264	4221082	1369	
	P15 150	612270	4221090	1368	•
	P15 160	612274	4221097	1369	
	P15 170	612283	4221106	1369	
	P15 180	612289	4221114	1369	

ژ**ئوفیزیک** 

سازمان زمین شناسی و سازمان زمین شناسی و اکتشافات معدنی کشور Ministry of Industry, Mine and Trade Geological Survey of Iran

زارت

	P19 20	595046	4230097	1351
	P19 30	595048	4230108	1351
	P19 40	595050	4230116	1352
	P19 50	595052	4230126	1353
	P19 60	595055	4230136	1353
	P19 70	595058	4230145	1354
	P19 80	595061	4230155	1355
	P19 90	595064	4230164	1355
S	P19 100	595067	4230174	1355
	P19 110	595070	4230183	1356
	P19 120	595073	4230193	1357
	P19 130	595076	4230202	1357
	P19 140	595078	4230212	1357
	P19 150	595081	4230222	1358
	P19 160	595084	4230231	1358
	P19 170	595087	4230241	1359
	P19 180	595091	4230250	1359
	P19 190	595094	4230260	1359
	P19 200	595097	4230270	1360
				V/

معاونت التثاف -مديريت التثافات ناحيه اي

	P17 20	600097	4227149	1363	
	P17 30	600100	4227160	1363	
	P17 40	600102	4227170	1364	
	P17 50	600105	4227179	1364	
	P17 60	600107	4227189	1365	
	P17 70	600109	4227198	1364	
	P17 80	600112	4227208	1365	
	P17 90	600114	4227219	1366	
	P17 100	600116	4227227	1367	
	P17 110	600120	4227236	1369	
	P17 120	600121	4227246	1370	
	P17 130	600124	4227257	1371	
	P17 140	600127	4227266	1372	
	P17 150	600129	4227275	1373	
	P17 160	600132	4227285	1373	
	P17 170	600135	4227295	1374	
	P17 180	600137	4227303	1376	
	P17 190	600140	4227314	1378	
	P17 200	600142	4227324	1379	
	P17 210	600145	4227333	1379	
	P17 220	600148	4227343	1381	
	P17 230	600150	4227353	1382	
	P18 0	595005	4230100	1350	
	P18 10	595010	4230110	1351	
	P18 20	595012	4230119	1351	
	P18 30	595017	4230129	1352	
	P18 40	595019	4230137	1352	
	P18 50	595022	4230147	1352	
	P18 60	595025	4230157	1353	
	P18 70	595030	4230166	1353	
	P18 80	595033	4230176	1354	
	P18 90	595036	4230185	1354	
	P18 100	595040	4230193	1355	
	P18 110	595041	4230204	1355	
	P18 120	595046	4230213	1355	
	P18 130	595049	4230223	1356	
	P18 140	595053	4230231	1356	
	P18 150	595055	4230241	1357	31
	P18 160	595060	4230251	1357	7
	P18 170	595063	4230260	1357	Χ.
	P18 180	595066	4230269	1358	V
	P18 190	595069	4230278	1358	
	P19 0	595040	4230079	1350	
	P19 10	595044	4230088	1351	

ژنوف<u>نری</u>ک